|
Record |
Links |
|
Author |
Forrest, J. L.,Wikramanayake, E., Shrestha, R., Areendran, G., Gyeltshen, K., Maheshwari, A., Mazumdar, S., Naidoo, R., Thapa, G. J., Thapa, K. |
|
|
Title |
Conservation and climate change: Assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Biological Conservation |
Abbreviated Journal |
|
|
|
Volume |
150 |
Issue |
|
Pages |
129-135 |
|
|
Keywords |
Snow leopard Climate adaptation Conservation planning Endangered species Climate change Himalaya |
|
|
Abstract |
Climate change is likely to affect the persistence of large, space-requiring species through habitat shifts,
loss, and fragmentation. Anthropogenic land and resource use changes related to climate change can also
impact the survival of wildlife. Thus, climate change has to be integrated into biodiversity conservation
plans. We developed a hybrid approach to climate-adaptive conservation landscape planning for snow
leopards in the Himalayan Mountains. We first mapped current snow leopard habitat using a mechanistic
approach that incorporated field-based data, and then combined it with a climate impact model using a
correlative approach. For the latter, we used statistical methods to test hypotheses about climatic drivers
of treeline in the Himalaya and its potential response to climate change under three IPCC greenhouse gas
emissions scenarios. We then assessed how change in treeline might affect the distribution of snow leopard
habitat. Results indicate that about 30% of snow leopard habitat in the Himalaya may be lost due to a
shifting treeline and consequent shrinking of the alpine zone, mostly along the southern edge of the range
and in river valleys. But, a considerable amount of snow leopard habitat and linkages are likely to remain
resilient to climate change, and these should be secured. This is because, as the area of snow leopard habitat
fragments and shrinks, threats such as livestock grazing, retaliatory killing, and medicinal plant collection
can intensify. We propose this approach for landscape conservation planning for other species
with extensive spatial requirements that can also be umbrella species for overall biodiversity.
2012 Elsevier Ltd. All rights reserved |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
SLN @ rakhee @ |
Serial |
1385 |
|
Permanent link to this record |