|
Korablev, M. P., Poyarkov, A. D., Karnaukhov, A. S., Zvychaynaya, E. Y., Kuksin, A. N., Malykh, S. V., Istomov, S. V., Spitsyn, S. V., Aleksandrov, D. Y., Hernandez-Blanco, J. A., Munkhtsog, B., Munkhtogtokh, O., Putintsev, N. I., Vereshchagin, A. S., Becmurody, A., Afzunov, S., Rozhnov, V. V. (2021). Large-scale and fine-grain population structure and genetic diversity of snow leopards (Panthera uncia Schreber, 1776) from the northern and western parts of the range with an emphasis on the Russian population. Conservation Genetics, .
Abstract: The snow leopard (Panthera uncia Schreber, 1776) population in Russia and Mongolia is situated at the northern edge of the range, where instability of ecological conditions and of prey availability may serve as prerequisites for demographic instability and, consequently, for reducing the genetic diversity. Moreover, this northern area of the species distribution is connected with the western and central parts by only a few small fragments of potential habitats in the Tian-Shan spurs in China and Kazakhstan. Given this structure of the range, the restriction of gene flow between the northern and other regions of snow leopard distribution can be expected. Under these conditions, data on population genetics would be extremely important for assessment of genetic diversity, population structure and gene flow both at regional and large-scale level. To investigate large-scale and fine-grain population structure and levels of genetic diversity we analyzed 108 snow leopards identified from noninvasively collected scat samples from Russia and Mongolia (the northern part of the range) as well as from Kyrgyzstan and Tajikistan (the western part of the range) using panel of eight polymorphic microsatellites. We found low to moderate levels of genetic diversity in the studied populations. Among local habitats, the highest heterozygosity and allelic richness were recorded in Kyrgyzstan (He = 0.66 ± 0.03, Ho = 0.70 ± 0.04, Ar = 3.17) whereas the lowest diversity was found in a periphery subpopulation in Buryatia Republic of Russia (He = 0.41 ± 0.12, Ho = 0.29 ± 0.05, Ar = 2.33). In general, snow leopards from the western range exhibit greater genetic diversity (He = 0.68 ± 0.04, Ho = 0.66 ± 0.03, Ar = 4.95) compared to those from the northern range (He = 0.60 ± 0.06, Ho = 0.49 ± 0.02, Ar = 4.45). In addition, we have identified signs of fragmentation in the northern habitat, which have led to significant genetic divergence between subpopulations in Russia. Multiple analyses of genetic structure support considerable genetic differentiation between the northern and western range parts, which may testify to subspecies subdivision of snow leopards from these regions. The observed patterns of genetic structure are evidence for delineation of several management units within the studied populations, requiring individual approaches for conservation initiatives, particularly related to translocation events. The causes for the revealed patterns of genetic structure and levels of genetic diversity are discussed.
|
|
Bhatia, S., Suryawanshi, K., Redpath, S., Namgail, S., Mishra, C. (2021). Understanding People's Relationship With Wildlife in Trans-Himalayan Folklore. Frontiers in Environmental Science, 9(595169), 1–10.
Abstract: People's views and values for wild animals are often a result of their experiences and traditional knowledge. Local folklore represents a resource that can enable an understanding of the nature of human-wildlife interactions, especially the underlying cultural values. Using archival searches and semi-structured interviews, we collected narratives about the ibex (Capra sibirica) (n = 69), and its predators, the wolf (Canis lupus) (n = 52) and the snow leopard (Panthera uncia) (n = 43), in Ladakh, India. We compared these stories to those of a mythical carnivore called seng ge or snow lion (n = 19), frequently referenced in local Tibetan Buddhist folklore and believed to share many of the traits commonly associated with snow leopards (except for livestock depredation). We then categorized the values along social-cultural, ecological and psychological dimensions. We found that the ibex was predominantly associated with utilitarianism and positive symbolism. Both snow leopard and wolf narratives referenced negative affective and negative symbolic values, though more frequently in the case of wolves. Snow leopard narratives largely focused on utilitarian and ecologistic values. In contrast, snow lion narratives were mostly associated with positive symbolism. Our results suggest that especially for snow leopards and wolves, any potentially positive symbolic associations appeared to be overwhelmed by negative sentiments because of their tendency to prey on livestock, unlike in the case of the snow lion. Since these values reflect people's real and multifarious interactions with wildlife, we recommend paying greater attention to understanding the overlaps between natural and cultural heritage conservation to facilitate human-wildlife coexistence.
|
|
Din, J. U., Nawaz, M. A., Norma-Rashid, Y., Ahmad, F., Hussain, K., Ali, H., Adli, D., S., H. (2020). Ecosystem Services in a Snow Leopard Landscape: A Comparative Analysis of Two High-elevation National Parks in the Karakoram-Pamir. Bio One, , 11–19.
Abstract: The high-elevation mountain ecosystems in the Karakoram and Pamir mountain ranges encompass enchanting landscapes, harbor unique biodiversity, and are home to many indigenous pastoral societies that rely onecosystem services for their survival. However, our understanding of the value of ecosystem services to a household economy is limited. This information is essential in devising sustainable development strategies and thus merits consideration. In this preliminary study, we attempted to assess and compare the value of selected ecosystem Khunjerab and Qurumbar National Parks (KNP and QNP) in the services of the KNP and QNP) in the Karakoram–Pamir in northern Pakistan using market-based and value transfer methods. Our results indicated that the economic benefits derived from the 2 high-elevation protected areas were US$ 4.6 million (QNP) and US$ 3.8 million (KNP) per year, translating into US$ 5955 and US$ 8912 per household per year, respectively. The monetary benefits from provisioning services constituted about 93% in QNP and 48% in KNP, which vividly highlights the prominence of the economic benefits generated from the protected areas for the welfare of disadvantaged communities. Together with the regulatory and cultural services valued
in this study, the perceived economic impact per household per year was 10–15 times higher than the mean household income per year. Considering the limited livelihood means and escalating poverty experienced by buffer zone communities, these values are substantial. We anticipate that communities’ dependency on resources will contribute to increased
degradation of ecosystems. We propose reducing communities’ dependency on natural resources by promoting sustainable alternative livelihood options and recognizing ecosystem services in cost–benefit analyses when formulating future policies.
|
|
Bhatia, S., Suryawanshi, K., Redpath, S. M., Mishra, C. (2020). Understanding people's responses toward predators in the Indian Himalaya. Animal Conservation, , 1–8.
Abstract: Research on human–wildlife interactions has largely focused on the magnitude of wildlife‐caused damage, and the patterns and correlates of human attitudes and behaviors. We assessed the role of five pathways through which various correlates potentially influence human responses toward wild animals, namely, value orientation, social interactions (i.e. social cohesion and support), dependence on resources such as agriculture and livestock, risk perception and nature of interaction with the wild animal. We specifically evaluated their influence on people's responses toward two large carnivores, the snow leopard Panthera uncia and the wolf Canis lupus in an agropastoral landscape in the Indian Trans‐Himalaya. We found that the nature of the interaction (location, impact and length of time since an encounter or depredation event), and risk perception (cognitive and affective evaluation of the threat posed by the animal) had a significant influence on attitudes and behaviors toward the snow leopard. For wolves, risk perception and social interactions (the relationship of people with local institutions and inter‐community dynamics) were significant. Our findings underscore the importance of interventions that reduce people's threat perceptions from carnivores, improve their connection with nature and strengthen the conservation capacity of local institutions especially in the context of wolves.
|
|
Singh, R., Krausman, P. R., Pandey, P., Maheshwari, A., Rawal,
R. S., Sharma, S., Shekhar, S. (2020). Predicting Habitat Suitability of Snow Leopards in the Western
Himalayan Mountains, India. Biology bulletin, 47(6), 655–664.
Abstract: The population of snow leopard (Panthera uncia) is declining
across their range, due to poaching, habitat fragmentation, retaliatory
killing, and a decrease of wild prey species. Obtaining information on
rare and cryptic predators living in remote and rugged terrain is
important for making conservation and management strategies. We used the
Maximum Entropy (MaxEnt) ecological niche modeling framework to predict
the potential habitat of snow leopards across the western Himalayan
region, India. The model was developed using 34 spatial species
occurrence points in the western Himalaya, and 26 parameters including,
prey species distribution, temperature, precipitation, land use and land
cover (LULC), slope, aspect, terrain ruggedness and altitude. Thirteen
variables contributed 98.6% towards predicting the distribution of snow
leopards. The area under the curve (AUC) score was high (0.994) for the
training data from our model, which indicates pre- dictive ability of
the model. The model predicted that there was 42432 km2 of potential
habitat for snow leop- ards in the western Himalaya region. Protected
status was available for 11247 km2 (26.5%), but the other 31185 km2
(73.5%) of potential habitat did not have any protected status. Thus,
our approach is useful for predicting the distribution and suitable
habitats and can focus field surveys in selected areas to save
resources, increase survey success, and improve conservation efforts for
snow leopards.
|
|
|