|
Farrington, J., Tsering, D. (2020). Snow leopard distribution in the Chang Tang region of Tibet, China. Global Ecology and Conservation, 23.
Abstract: In 2006 and 2007, the authors conducted human-wildlife conflict surveys in the Tibet Autonomous Region’s (TAR) Shainza, Nyima, and Tsonyi Counties, located in the TAR’s remote Chang Tang region. At this time, prior knowledge of the snow leopard in this vast 700,000 km2 region was limited to just eight firsthand snow leopard sign and conflict location records and 15 secondhand records. These surveys revealed a previously undocumented and growing problem of human-snow leopard conflict. The 2007 survey also yielded 39 new snow leopard conflict incident locations and 24 new snow leopard sign locations. Next, snow leopard telephone interviews and mapping exercises were conducted with Tibet Forestry Bureau staff that yielded an additional 63 and 144 new snow leopard conflict and sighting location records, respectively. These 270 new snow leopard location records, together with 39 records collected by other observers from 1988 to 2009, were compiled into a snow leopard distribution map for the Chang Tang. This effort greatly expanded knowledge of the snow leopard’s distribution in this region which remains one of the least understood of the snow leopard’s key range areas. New knowledge gained on snow leopard distribution in the Chang Tang through this exercise will help identify human-snow leopard conflict hot spots and inform design of human-snow leopard conflict mitigation and conservation strategies for northwest Tibet. Nevertheless, extensive additional field verification work will be required to definitively delineate snow leopard distribution in the Chang Tang. Importantly, since 2006, a number of major transportation infrastructure projects have made the Chang Tang more accessible, including paving of highways, new railroads, and new airports. This has led to a greatly increased number of tourists visiting western Tibet, particularly Mt. Kailash and Lake Manasarovar. At the same time, large areas of the Chang Tang have been fenced for livestock pastures as part of government initiatives to allocate pasturelands to individual families. All three of these developments have a large potential to cause disturbance to snow leopards and their prey species, including by hindering their movements and degrading their habitat. Therefore, future conservation measures in the Chang Tang will need to insure that development activities and the growing number of visitors to the Chang Tang do not adversely affect the distribution of snow leopards and their prey species or directly degrade their habitat.
|
|
Farrington, J., Tsering, D. (2019). Human-snow leopard conflict in the Chang Tang region of Tibet, China. Biological Conservation, 237, 504–513.
Abstract: In April 2006, the authors conducted a preliminary human-wildlife conflict survey of 300 livestock herders in Shainza, Nyima, and Tsonyi Counties in northern Tibet's sparsely-populated Chang Tang region. This survey revealed a widespread but previously undocumented problem of snow leopard predation on livestock. In June and July 2007, an exploratory human-snow leopard conflict survey of 234 herders in the above counties found that 65.8% of respondents had experienced conflict with snow leopards in the form of livestock kills, with 77.3% of the most recent incidents occurring in the previous five years. These incidents were concentrated in winter and spring and a surprising 39.6% of incidents occurred during the day, often with herders present. Fifteen exploratory snow leopard sign transects totaling 14.85 km were conducted. Abundant snow leopard scrapes as well as pug marks were found, confirming the presence of these secretive cats. A total of 521 blue sheep were counted on and off sign transects indicating widespread availability of wild snow leopard prey. The recent surge in reported snow leopard conflict is likely due to increasing human and livestock populations, establishment of two multiple-use nature reserves accompanied by improved enforcement of wildlife protection laws, and a regional gun and trap ban launched in 2001. However, retaliatory killing of snow leopards in the survey area continues to be a potential threat. Therefore, measures are needed to reduce livestock kills by snow leopards, including corral improvements, improved guarding, establishment of livestock compensation schemes, and educating herders about snow leopard behavior.
|
|
Johansson, O., Samelius, G., Wikberg, E, Chapron, G., Mishra, C., Low, M. (2020). Identification errors in camera- trap studies result in systematic population overestimation. Scientific Reports, 10(6393), 1–10.
Abstract: Reliable assessments of animal abundance are key for successful conservation of endangered species. For elusive animals with individually-unique markings, camera-trap surveys are a benchmark standard for estimating local and global population abundance. Central to the reliability of resulting abundance estimates is the assumption that individuals are accurately identified from photographic captures. To quantify the risk of individual misidentification and its impact on population abundance estimates we performed an experiment under controlled conditions in which 16 captive snow leopards (Panthera uncia) were camera-trapped on 40 occasions and eight observers independently identified individuals and recaptures. Observers misclassified 12.5% of all capture occasions, resulting in systematically inflated population abundance estimates on average by one third (mean ± SD = 35 ± 21%). Our results show that identifying individually-unique individuals from camera-trap photos may not be as reliable as previously believed, implying that elusive and endangered species could be less abundant than current estimates indicate.
|
|
Planning Wildlife Conservation in Leh and Kargil Districts of Ladakh, J. and K. (1999). Establising Snow Leopard Information Management System (SLIMS) at WII Phase 1 – Trans Himalaya.
|
|
Poyarkov, A. D., Munkhtsog, B., Korablev, M. P., Kuksin, A. N., Alexandrov, D. Y., Chistopolova, M. D., Hernandez-Blanco, J. A., Munkhtogtokh, O., Karnaukhov, A. S., Lkhamsuren, N., Bayaraa, M., Jackson, R. M., Maheshwari, A., Rozhnov, V. V. (2020). Assurance of the existence of a trans-boundary population of the snow leopard (Panthera uncia) at Tsagaanshuvuut – Tsagan- Shibetu SPA at the Mongolia-Russia border. Integrative Zoology, (15), 224–231.
Abstract: The existence of a trans-boundary population of the snow leopard (Panthera uncia) that inhabits the massifs of Tsagaanshuvuut (Mongolia) – Tsagan-Shibetu (Russia) was determined through non-invasive genetic analysis of scat samples and by studying the structure of territory use by a collared female individual. The genetic analysis included species identification of samples through sequencing of a fragment of the cytochrome b gene and individual identification using a panel of 8 microsatellites. The home range of a female snow leopard marked with a satellite Global Positioning System (GPS) collar was represented by the minimum convex polygon method (MCP) 100, the MCP 95 method and the fixed kernel 95 method. The results revealed insignificant genetic differentiation between snow leopards that inhabit both massifs (minimal fixation index [FST]), and the data testify to the unity of the cross-border group. Moreover, 5 common individuals were identified from Mongolian and Russian territories. This finding clearly shows that their home range includes territories of both countries. In addition, regular movement of a collared snow leopard in Mongolia and Russia confirmed the existence of a cross-border snow leopard group. These data support that trans-boundary conservation is important for snow leopards in both countries. We conclude that it is crucial for Russia to study the northern range of snow leopards in Asia.
|
|
|