|
Anonymous. (1999). Livestock Predation Control Workshop.
|
|
|
Aramov, B. (1997). The Biology of the Snow Leopard in the Gissarsky Nature Reserve. In R. and A. A. Jackson (Ed.), (pp. 108–109). Lahore, Pakistan: Islt.
|
|
|
Aryal, A. (2009). Final Report On Demography and Causes of Mortality of Blue Sheep (Pseudois nayaur) in Dhorpatan Hunting Reserve in Nepal.
Abstract: A total of 206 individual Blue sheep Pseudois nayaur were estimated in Barse and Phagune blocks of Dhorpatan Hunting Reserve (DHR) and population density was 1.8 Blue sheep/sq.km. There was not significant change in population density from last 4 decades. An average 7 animals/herd (SD-5.5) were classified from twenty nine herds, sheep per herds varying from 1 to 37. Blue sheep has classified into sex ratio on an average 75 male/100females was recorded in study area. The sex ratio was slightly lower but not significantly different from the previous study. Population of Blue sheep was seen stable or not decrease even there was high poaching pressure, the reason may be reducing the number of predators by poison and poaching which has
supported to increase blue sheep population. Because of reducing the predators Wolf Canis lupus, Wild boar population was increasing drastically in high rate and we can observed wild boar above the tree line of DHR. The frequency of occurrence of different prey species in scats of different predators shows that, excluding zero values, the frequencies of different prey species were no significantly different (ö2= 10.3, df = 49, p > 0.05). Most of the scats samples (74%) of Snow leopard, Wolf, Common Leopard, Red fox's cover one prey species while two and three species were present in 18% and 8%, respectively. Barking deer Muntiacus muntjak was the most frequent (18%) of total diet composition of common leopards. Pika Ochotona roylei was the most frequent (28%), and Blue sheep was in second position for diet of snow leopards which cover 21% of total diet composition. 13% of diet covered non-food item such as soil, stones, and vegetable. Pika was most frequent on Wolf and Red fox diet which covered 32% and 30% respectively. There was good positive relationship between the scat density and Blue sheep consumption rate, increasing the scat density, increasing the Blue sheep consumption rate. Blue sheep preference by different predators such as Snow leopard, Common leopard, Wolf and Red fox were 20%, 6%, 13% and 2% of total prey species respectively.
|
|
|
Fox, J. L. (1992). Conservation in Ladakh's Hemis National Park: Predator and Prey (Vol. x). Seattle: Islt.
|
|
|
Miller, D. J., & Jackson, R. (1994). Livestock and Snow Leopards:making room for competing users on the Tibetian Plateau. In J.L.Fox, & D.Jizeng (Eds.), (pp. 315–328). Usa: Islt.
|
|
|
Mongolian Biosphere & Ecology Association. (2010). Mongolian Biosphere & Ecology Association Report March 2010.
Abstract: In accordance with order of the Ministry of Nature and Tourism,
zoologists of our association have made surveys in three ways such as
reasons why snow leopards attack domestic animals, “Snow leopard” trial
operation to count them and illegal hunting in territories of Khovd,
Gobi-Altai, Bayankhongor, Uvurkhangai and Umnugobi provinces from
September 2009 to January 2010. As result of these surveys it has made
the following conclusions in the followings: Reason to hunt them illegally: the principal reason is that
administrative units have been increased and territories of
administrative units have been diminished. There have been four
provinces in 1924 to 1926, 18 since 1965, 21 since 1990. Such situation
limits movements of herdsmen completely and pastures digressed much than
ever before. As result of such situation, 70% of pastures become desert.
Such digression caused not only heads of animals and also number of
species. Guarantee is that birds such as owls, cuckoo, willow grouse in
banks of Uyert river, Burkhanbuudai mountain, located in Biger soum,
Gobi-Altai province, which are not hunted by hunters, are disappearing
in the recent two decades. For that reason we consider it is urgently
necessary for the government to convert administrative unit structures
into four provinces. This would influence herdsmen moving across
hundreds km and pastures could depart from digression.
Second reason: cooperative movement won. The issues related to management and strengthening of national
cooperatives, considered by Central Committee of Mongolian People's
Revolutionary Party in the meeting in March 1953 was the start of
cooperatives' movement. Consideration by Yu. Tsedenbal, chairman of
Ministers Council, chairman of the MPRP, on report "Result of to unify
popular units and some important issues to maintain entity management of
agricultural cooperatives" in the fourth meeting by the Central
Committee of Mongolian People's Revolutionary Party /MPRP/ on December
16-17, 1959, proclaimed complete victory of cooperative. At the end of
1959, it could unify 767 small cooperative into 389 ones, unify 99.3 %
of herdsmen and socialize 73.3 % of animals. The remaining of animals
amount 6 million 163 thousands animals, and equals to 26.7% of total
animals. This concerned number of animals related to the article
mentioned that every family should have not more that 50 animals in
Khangai zone and not more 75 animals in Gobi desert. It shows that such
number could not satisfy needs of family if such number is divided into
five main animals in separating with reproduction animals and adult
animals. So herdsmen started hunt hoofed animals secretly and illegally
in order to satisfy their meat needs. Those animals included main food
of snow leopard such as ibex, wild sheep, and marmot. Third reason is that the state used to hunt ibex, which are main
nutrition of snow leopards, every year. The administrative unit of the
soum pursued policy to hunt ibex in order to provide meat needs of
secondary schools and hospitals. That's why this affected decrease of
ibex population. Preciously from 1986 to 1990 the permissions to hunt
one thousands of wild sheep and two thousands of ibexes were hunt for
domestic alimentary use every year. Not less than 10 local hunters of every soum used to take part in big
game of ibexes. Also they hunted many ibexes, chose 3-10 best ibexes and
hid them in the mountains for their consummation during hunting.
Fourth reason: hunting of wolves. Until 1990 the state used to give
prizes to hunter, who killed a wolf in any seasons of the year. Firstly
it offered a sheep for the wolf hunter and later it gave 25 tugrugs /15
USD/. Every year, wolf hunting was organized several times especially
picking wolf-cubs influenced spread and population of wolves. So snow
leopard came to the places where wolves survived before and attack
domestic animals. Such situation continued until 1990. Now population of
ibexes has decreased than before 1990 since the state stopped hunting
wolves, population of wolves increased in mountainous zones. We didn't
consider it had been right since it was natural event. However
population of ibexes decreased. Fifth reason: Global warming. In recent five years it has had a drought
and natural disaster from excessive snow in the places where it has
never had such natural disasters before. But Mongolia has 40 million
heads of domestic animals it has never increased like such quantity in
its history before. We consider it is not incorrect that decrease of
domestic animals could give opportunities to raise population of wild
animals. Our next survey is to make attempt to fix heads of snow leopards
correctly with low costs.
|
|
|
ud Din, J. (2008). Assessing the Status of Snow Leopard in Torkhow Valley, District Chitral, Pakistan: Final Technical Report.
Abstract: This study was aimed at assessing the status of Snow leopard, its major prey base, and the extent of human-Snow leopard conflict and major threats to the wildlife in north Chitral (Torkhow valley) Pakistan. Snow leopard occurrence was conformed through sign transect surveys i.e. SLIMS. Based on the data collected the number of Snow leopards in this survey block (1022 Kmý) is estimated to be 2-3 animals. Comparing this estimate with the available data from other parts of the district the population of snow leopard in Chitral district was count to be 36 animals. Livestock depredation reports collected from the area reflect the existence of human-snow leopard conflict and 138 cases were recorded affecting 102 families (in a period of eight years, 2001-2008). Ungulates (Himalayan Ibex) rut season surveys were conducted in coordination with NWFP Wildlife department. A total of 429 animals were counted using direct count (point method) surveys. Other snow leopard prey species recorded include marmot, hare, and game birds. Signs of other carnivores i.e. wolf, jackal, and fox were also noticed. Major threats to the survival of wildlife especially snow leopard reckoned include retaliatory killing (Shooting, Poisoning), poaching, loss of natural prey, habitat degradation (over grazing, fodder and fuel wood collection), lack of awareness, and over population. GIS map of the study area was developed highlighting the area searched for Snow leopard and its prey species. Capacity of the Wildlife Department staff was built in conducting SLIMS and ungulate surveys through class room and on field training. Awareness regarding the importance of wildlife conservation was highlighted to the students, teachers and general community through lectures and distribution of resource materials developed by WWF-Pakistan.
|
|
|
Wangchuk, R., & Jackson, R. (2009). A Community-based Approach to Mitigating Livestock-Wildlife Conflict in Ladakh, India.
Abstract: Livestock depredation by snow leopard and wolf is widespread across the Himalayan region (Jackson et al. 1996, Jackson and Wangchuk 2001; Mishra 1997, Oli et al 1994). For example, in India's Kibber Wildlife Sanctuary, Mishra (1997) reported losses amounting to 18% of the livestock holdings and valued at about US $138 per household. The villagers claimed predation rates increased after establishment of the sanctuary, but
surveys indicated a dramatic increase in livestock numbers accompanying changes in animal husbandry systems (Mishra 2000).
|
|