|
Johnson, W. E., Dratch, P. A., Martenson, J. S., & O'Brien, S. J. (1996). Resolution of recent radiations within three evolutionary lineages of Felidae using mitochondrial restriction fragment length polymorphism variation. Journal of Mammalian Evolution, 3(2), 97–120.
Abstract: Patterns of mitochondrial restriction fragment length polymorphism (RFLP) variation were used to resolve more recent relationships among the species of the Felidae ocelot lineage, domestic cat lineage, and pantherine lineage. Twenty-five of 28 restriction enzymes revealed site variation in at least 1 of 21 cat species. The ocelot lineage was resolved into three separate sister taxa groups: Geoffroy's cat (Oncifelis geoffroyi) and kodkod (O. guigna), ocelot (Leopardus pardalis) and margay (L. wiedii), and pampas cat (Lynchailurus colocolo) and most of the tigrina samples (Leopardus tigrina). Within the domestic cat lineage, domestic cat (Felis catus), European wild cat (F. silvestris), and African wild cat (F. libyca) formed a monophyletic trichotomy, which was joined with sand cat (F. margarita) to a common ancestor. Jungle cat (F. chaus) and black-footed cat (F. nigripes) mtDNAs diverged earlier than those of the other domestic cat lineage species and are less closely related. Within the pantherine lineage, phylogenetic analysis identified two distinct groups, uniting lion (P. leo) with leopard (P. pardus) and tiger (P. tigris) with snow leopard (P. uncia).
|
|
|
Khatoon, R., Hussain, I., Anwar, M., Nawaz, M. A. (2017). Diet selection of snow leopard (Panthera uncia) in Chitral, Pakistan. Turkish Journal of Zoology, (14), 914–923.
Abstract: Snow leopard (Panthera uncia) is an elusive endangered carnivore found in remote mountain regions of Central Asia, with
sparse distribution in northern Pakistan, including Chitral and Baltistan. The present study determined the food habits of snow leopard,
including preferred prey species and seasonal variation in diet. Fifty-six scat samples were collected and analyzed to determine the
diet composition in two different seasons, i.e. summer and winter. Hair characteristics such as cuticular scale patterns and medullary
structure were used to identify the prey. This evidence was further substantiated from the remains of bones, claws, feathers, and other
undigested remains found in the scats. A total of 17 prey species were identified; 5 of them were large mammals, 6 were mesomammals,
and the remaining 6 were small mammals. The occurrence of wild ungulates (10.4%) in the diet was low, while livestock constituted a
substantial part (26.4%) of the diet, which was higher in summer and lower in winter. Mesomammals altogether comprised 33.4% of
the diet, with palm civet (Paguma larvata) as a dominant (16.8%) species, followed by golden marmot (Marmota caudate) (8.8%), which
was higher in winter. There was a significant difference in seasonal variation in domestic livestock and small mammals. The livestock
contribution of 26.4% observed in the present study indicates a significant dependence of the population on livestock and suggests
that the study area is expected to be a high-conflict area for snow leopards. The results of the current study would help improve the
conservation efforts for snow leopards, contributing to conflict resolution and effective management of this endangered cat.
|
|
|
Lui, C. -guang, Zheng, C. -wu, & Ren, J. -rang. (2003). Research Foods and Food Sources About Snow Leopard (Panthera uncia) (Vol. 31).
Abstract: During 1984-1987, 1992-1995, and 1998-2001, the author researched snow leopard, white lipped deer, kiang, and argali in Qinghai, Gansu, Xingiang, and Sichuan. He collected 644 snow leopard droppings, and analyzed kinds of foods and sources from perch. Snow leopard's foods include most main foods, main foods, comparative foods and lesser foods. Studied one another
index of faunistic congruence of foods species that from various distribution and variation both perch vertical variety and foods of snow leopard.
|
|
|
Suryawanshi, K. R., Bhatnagar, Y., & Mishra, C. (2009). Why should a grazer browse? Livestock impact on winter resource use by bharal Pseudois nayaur
. Oecologia, , 1–10.
Abstract: Many mammalian herbivores show a temporal diet variation between graminoid-dominated and browse dominated diets. We determined the causes of such a diet shift and its implications for conservation of a medium sized ungulate-the bharal Pseudois nayaur. Past studies show that the bharal diet is dominated by graminoids (>80%) during summer, but the contribution of graminoids declines to about 50% in winter. We tested the predictions generated by two alternative hypotheses explaining the decline: low graminoid availability during winter causes bharal to include browse in their diet; bharal include browse, with relatively higher nutritional quality, in their diet to compensate for the poor quality of graminoids during winter. We measured winter graminoid availability in areas with no livestock grazing, areas with relatively moderate livestock grazing, and those with intense livestock grazing pressures. The chemical composition of plants contributing to the bharal diet was analysed. The bharal diet was quantiWed through signs of feeding on vegetation at feeding locations. Population structures of bharal populations were recorded using a total count method. Graminoid availability was highest in areas without livestock grazing, followed by areas with moderate and intense livestock grazing. The bharal diet was dominated by graminoids (73%) in areas with highest graminoid availability. Graminoid contribution to the bharal diet declined monotonically (50, 36%) with a decline in graminoid availability. Bharal young to female ratio was 3 times higher in areas with high graminoid availability than areas with low graminoid availability. The composition of the bharal winter diet was governed predominantly by the availability of graminoids in the rangelands. Our results suggest that bharal include more browse in their diet during winter due to competition from livestock for graminoids. Since livestock grazing reduces graminoid availability, creation of livestock-free areas is necessary for the conservation of grazing species such as the bharal and its predators including the endangered snow leopard in the Trans-Himalaya.
|
|