|
Ale, S. B., Yonzon, P., & Thapa, K. (2007). Recovery of snow leopard Uncia uncia in Sagarmatha (Mount Everest) National Park, Nepal (Vol. 41).
Abstract: From September to November 2004 we conducted surveys of snow leopard Uncia uncia signs in three major valleys in Sagarmatha (Mount Everest) National Park in Nepal using the Snow Leopard Information Management System, a standardized survey technique for snow leopard research. We walked 24 transects covering c. 14 km and located 33 sites with 56 snow leopard signs, and 17 signs incidentally in other areas. Snow leopards appear to have re-inhabited the Park, following their disappearance c. 40 years ago, apparently following the recovery of Himalayan tahr Hemitragus jemlahicus and musk deer Moschus chrysogaster populations. Taken together the locations of all 73 recent snow leopard signs indicate that the species is using predominantly grazing land and shrubland/ open forest at elevations of 3,000-5,000 m, habitat types that are also used by domestic and wild ungulates. Sagarmatha is the homeland of c. 3,500 Buddhist Sherpas with .3,000 livestock. Along with tourism and associated developments in Sagarmatha, traditional land use practices could be used to ensure coexistence of livestock and wildlife, including the recovering snow leopards, and ensure the wellbeing of the Sherpas.
|
|
|
Bhatnagar, Y. V., Stakrey, R. W., & Jackson, R. (2000). A Survey of Depredation and Related Wildlife-Human Conflicts in Hemis National Park, Ladakh (India) (Vol. xvi). Seattle: Islt.
|
|
|
Braden, K. E. (1988). Economic Development in Six Regions of Snow Leopard Habitat in the U.S.S.R. In H.Freeman (Ed.), (pp. 227–246). India: International Snow Leopard Trust and the Wildlife Institute of India.
Abstract: The Disappearance of traditional ungulate prey of the snow leopard may be contributing to its endangered status in the wild. Soviet biologists have noted that wild sheep are a primary prey of the snow leopard in the southern Russian union republic and the Central Asian union republic of the U.S.S.R. While poaching appears to have had some impact on the status of these sheep, econmic pressures may be contributing to their decrease. Evidence presented for KAzakhstan and three regions of the Russian republic demonstrates that commercial sheep and goat production appears to be growing at a very high pace in these areas, thus consumming habitat otherwise available for wild herds.
|
|
|
Chundawat, R. S., & Rawat G.S. (1990). Food Habits of Snow Leopard in Ladakh, India.
Abstract: The snow leopard has remained little studied in the past, and most of the information available is either in the form of natural history or anecdotal notes. The inaccessibility of the terrain and its secretive habits make this one of the more difficult animals to study in the wild. In the past decade, several ecological surveys were conducted in India, Nepal, China and Mongolia, which gave us information on the status and distribution of snow leopard (Jackson, Mallon, Fox, Schaller, Chundawat) A detailed study in Nepal through light on its secretive habits ( Jackson and Ahlborn, 1989). Even then little is known about its feeding habits. The present paper discusses this aspect from a study which was part of a detailed study conducted on the ecology of snow leopard in India from October 1987 to Feburary 1990.
|
|
|
Dementiev G.P. (1967). Quadrupeds inhabitants of the mountains.
Abstract: All species inhabiting the highlands of Asia are normally referred to as herbivorous or predators. A majority of alpine land species (rodents and ungulates) feeds upon leaves, stalks, and roots of plants. Among widely distributed highland species the most interesting are marmots, red pica, grey vole, argali, and ibex. Argali and ibex are preyed on by snow leopards. There are reasons to believe that these mountain animal species are more ancient than their cognates in a plain. All the way from Central Asia to Europe, species belonging to the eastern and western fauna complexes are observed to interpenetrate.
|
|
|
Egorov O.V. (1955). Enemies, infections, parasites and mortality rate of ibex (Vol. Vol. 42.).
Abstract: Reasons for ibex and argali mortality from natural enemies, parasites, infections, accidents, and hunters are analyzed. Snow leopard is one of the most dangerous enemies of ibex and argali, preying equally on both young and mature animals (mostly males). Snow leopard feeds upon ibex all year round. Unlike wolf, snow leopard would never kill several animals at a time, but only one selected victim. The food remains left by these predators are different in terms of the skull gnawing. Nasal bones and eye-sockets on the skull of ibex killed by snow leopard remain undamaged, while wolf gnaws off nasal part of the skull, breaks eye-sockets, eats lower jaw, widens occipital hole and pulls out brains. Snow leopard leaves large pieces of skin around the skeleton of the victim, whereas wolf tears it to shreds or eats up fully. Sometimes parts of the victim left by snow leopard are eaten by wolf. It is easy to mix the remains of snow leopard's or griffon vulture's food. The remains differ in skin being turned inside out rather than torn to large pieces.
|
|
|
Filonov K.F. (1996). Large terrestrial mammals in the reserves of Russia: their status and prospects of conservation.
Abstract: The authors make an analysis of fauna of large mammals in 68 nature reserves. There are 10 carnivores and 17 ungulates. Wolf, brown bear, wolverine and lynx appeared to be more widely spread. Dhole, snow leopard, tiger, Himalayan bear have limited distribution and low density. Hey have recorded in a few nature reserves. Among the ungulates wild boar, musk deer, red deer, roe deer, moose, reindeer and aurochs are more widely spread.
|
|
|
Formozov A.N. (1990). Seasonal migrations of mammals due to snow cover. Distribution of the Felidae family species.
Abstract: It describes vertical migrations of ungulates (ibex, wild sheep) in the Semerechie, Altai, Sayans, Tuva, seasonal migrations of steppe ungulates (kulan and saiga), and migrations of predators (lynx, leopard, irbis, tiger, dhole, wolf, glutton) following ungulates during winters with thick snow cover. Shorter local migrations related to uneven snow cover are typical for corsac, fox, and wolf. An analysis of the Felidae family species distribution showed that northern border of the cat family species habitat is connected with borders of 20 30 cm thick snow cover rather than with landscape contours or typical habitats. With the exception of lynx, this can be referred to the large cat family species such as irbis, leopard, and tiger.
|
|
|
Fox, J. L., Nurbu, C., & Chundawat, R. S. (1991). The Mountain Ungulates of Ladakh India. Biological Conservation, 58, 167–190.
|
|
|
Franchini, M., Atzeni, L., Lovari, S., Nasanbat, B., Ravchig, S., Herrador, F. C., Bombieri, G., Augugliaro, C. (2022). Spatio-temporal behaviour of predators and prey in an arid environment of Central Asia. Current Zoology, (zoac093).
Abstract: The mechanisms of interactions between apex and smaller carnivores may range from competition to facilitation. Conversely, interactions between predators and prey are mainly driven by the prey reducing the likelihood of encounters with predators. In this study, we investigated (i) the spatio-temporal interactions between an apex (the snow leopard) and a meso-predator (the red fox), and (ii) the temporal interactions between the snow leopard and its potential prey (Siberian ibex, argali, Asian wild ass, Tolai hare) through camera-trapping in the Mongolian Great Gobi-A. The probability of occurrence for the red fox was higher in presence of the snow leopard than in its absence. Moreover, the red fox activity pattern matched that of the snow leopard, with both species mostly active at sunset. This positive spatio-temporal interaction suggests that the presence of the snow leopard may be beneficial for the red fox in terms of scavenging opportunities. However, other explanations may also be possible. Amongst prey, the Siberian ibex and the argali were mainly active during the day, whereas the Asian wild ass and the Tolai hare were more nocturnal. These findings suggest that potential prey (especially the Siberian ibex and the argali) may shape their behaviour to decrease the opportunity of encounters with the snow leopard. Our results have revealed complex interactions between apex and smaller predators and between apex predator and its potential prey.
|
|