|
Aromov B. (1995). The Biology of the Snow Leopard in the Hissar Nature Reserve.
Abstract: The work contains data on biology snow leopard in Hissar nature reserve, Uzbekistan. The number of snow leopards in this reserve has increased from two or four in 1981 to between 13 and 17 individuals in 1994. Since 1981, snow leopards have been sighted 72 times and their tracks or pugmarks 223 times. In the Hissar Nature Reserve snow leopards largely feed on ibex. Over a period of 14 years, 92 kills and remains of ibex aged from one to thirteen years of age have been examined. Other records of predation, by the number of events observed, include 33 cases of juvenile and mature horses, 25 long-tailed marmot (Marmota caudata). 18 Himalayan snowcock (Tetraogallus himalayemis), 17 domestic goat, 13 wild boar (Sus scrofa), five domestic sheep and three incidents involving cattle. Twenty-two attacks on domestic flocks were reported, and these occurred during both the daytime and at night. Snow leopards usually mate between the 20th of February and March 20th. The offspring are born in late April to May, and there are usually two per litter (23 encounters), although a single litter of three has also been recorded.
|
|
|
Mongolian Biosphere & Ecology Association. (2010). Mongolian Biosphere & Ecology Association Report March 2010.
Abstract: In accordance with order of the Ministry of Nature and Tourism,
zoologists of our association have made surveys in three ways such as
reasons why snow leopards attack domestic animals, “Snow leopard” trial
operation to count them and illegal hunting in territories of Khovd,
Gobi-Altai, Bayankhongor, Uvurkhangai and Umnugobi provinces from
September 2009 to January 2010. As result of these surveys it has made
the following conclusions in the followings: Reason to hunt them illegally: the principal reason is that
administrative units have been increased and territories of
administrative units have been diminished. There have been four
provinces in 1924 to 1926, 18 since 1965, 21 since 1990. Such situation
limits movements of herdsmen completely and pastures digressed much than
ever before. As result of such situation, 70% of pastures become desert.
Such digression caused not only heads of animals and also number of
species. Guarantee is that birds such as owls, cuckoo, willow grouse in
banks of Uyert river, Burkhanbuudai mountain, located in Biger soum,
Gobi-Altai province, which are not hunted by hunters, are disappearing
in the recent two decades. For that reason we consider it is urgently
necessary for the government to convert administrative unit structures
into four provinces. This would influence herdsmen moving across
hundreds km and pastures could depart from digression.
Second reason: cooperative movement won. The issues related to management and strengthening of national
cooperatives, considered by Central Committee of Mongolian People's
Revolutionary Party in the meeting in March 1953 was the start of
cooperatives' movement. Consideration by Yu. Tsedenbal, chairman of
Ministers Council, chairman of the MPRP, on report "Result of to unify
popular units and some important issues to maintain entity management of
agricultural cooperatives" in the fourth meeting by the Central
Committee of Mongolian People's Revolutionary Party /MPRP/ on December
16-17, 1959, proclaimed complete victory of cooperative. At the end of
1959, it could unify 767 small cooperative into 389 ones, unify 99.3 %
of herdsmen and socialize 73.3 % of animals. The remaining of animals
amount 6 million 163 thousands animals, and equals to 26.7% of total
animals. This concerned number of animals related to the article
mentioned that every family should have not more that 50 animals in
Khangai zone and not more 75 animals in Gobi desert. It shows that such
number could not satisfy needs of family if such number is divided into
five main animals in separating with reproduction animals and adult
animals. So herdsmen started hunt hoofed animals secretly and illegally
in order to satisfy their meat needs. Those animals included main food
of snow leopard such as ibex, wild sheep, and marmot. Third reason is that the state used to hunt ibex, which are main
nutrition of snow leopards, every year. The administrative unit of the
soum pursued policy to hunt ibex in order to provide meat needs of
secondary schools and hospitals. That's why this affected decrease of
ibex population. Preciously from 1986 to 1990 the permissions to hunt
one thousands of wild sheep and two thousands of ibexes were hunt for
domestic alimentary use every year. Not less than 10 local hunters of every soum used to take part in big
game of ibexes. Also they hunted many ibexes, chose 3-10 best ibexes and
hid them in the mountains for their consummation during hunting.
Fourth reason: hunting of wolves. Until 1990 the state used to give
prizes to hunter, who killed a wolf in any seasons of the year. Firstly
it offered a sheep for the wolf hunter and later it gave 25 tugrugs /15
USD/. Every year, wolf hunting was organized several times especially
picking wolf-cubs influenced spread and population of wolves. So snow
leopard came to the places where wolves survived before and attack
domestic animals. Such situation continued until 1990. Now population of
ibexes has decreased than before 1990 since the state stopped hunting
wolves, population of wolves increased in mountainous zones. We didn't
consider it had been right since it was natural event. However
population of ibexes decreased. Fifth reason: Global warming. In recent five years it has had a drought
and natural disaster from excessive snow in the places where it has
never had such natural disasters before. But Mongolia has 40 million
heads of domestic animals it has never increased like such quantity in
its history before. We consider it is not incorrect that decrease of
domestic animals could give opportunities to raise population of wild
animals. Our next survey is to make attempt to fix heads of snow leopards
correctly with low costs.
|
|
|
Olaf, R. P., Edmonds, B., Gittleman, J., & Purvis, A. (1999). Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biological Reviews of the Cambridge Philosophical Society, 74, 143–175.
Abstract: One way to build larger, more comprehensive phylogenies is to combine the vast amount of phylogenetic information already available. We review the two main strategies for accomplishing this (combining raw data versus combining trees), but employ a relatively new variant of the latter: supertree construction. The utility of one supertree technique, matrix representation using parsimony analysis (MRP), is demonstrated by deriving a complete phylogeny for all 271 extant species of the Carnivora from 177 literature sources. Beyond providing a `consensus' estimate of carnivore phylogeny, the tree also indicates taxa for which the relationships remain controversial (e.g. the red panda; within canids, felids, and hyaenids) or have not been studied in any great detail (e.g. herpestids, viverrids, and intrageneric relationships in the procyonids). Times of divergence throughout the tree were also estimated from 74 literature sources based on both fossil and molecular data. We use the phylogeny to show that some lineages within the Mustelinae and Canidae contain significantly more species than expected for their age, illustrating the tree's utility for studies of macroevolution. It will also provide a useful foundation for comparative and conservational studies involving the carnivores.
(Received June 2 1998)(Revised November 27 1998)(Accepted December 16 1998)
|
|
|
Suryawanshi, K. R. (2009). Towards snow leopard prey recovery: understanding the resource use strategies and demographic responses of bharal Pseudois nayaur to livestock grazing and removal; Final project report.
Abstract: Decline of wild prey populations in the Himalayan region, largely due to competition with livestock, has been identified as one of the main threats to the snow leopard Uncia uncia. Studies show that bharal Pseudois nayaur diet is dominated by graminoids during summer, but the proportion of graminoids declines in winter. We explore the causes for the decline of graminoids from bharal winter diet and resulting implications for bharal conservation. We test the predictions generated by two alternative hypotheses, (H1) low graminoid availability caused by livestock grazing during winter causes bharal to include browse in their diet, and, (H2) bharal include browse, with relatively higher nutrition, to compensate for the poor quality of graminoids during winter. Graminoid availability was highest in areas without livestock grazing, followed by areas with moderate and intense livestock grazing. Graminoid quality in winter was relatively lower than that of browse, but the difference was not statistically significant. Bharal diet was dominated by graminoids in areas with highest graminoid availability. Graminoid contribution to bharal diet declined monotonically with a decline in graminoid availability. Bharal young to female ratio was three times higher in areas with high graminoid availability than areas with low graminoid availability. No starvation-related adult mortalities were observed in any of the areas. Composition of bharal winter diet was governed predominantly by the availability of graminoids in the rangelands. Since livestock grazing reduces graminoid availability, creation of livestock free areas is necessary for conservation of grazing species such as the bharal and its predators such as the endangered snow leopard in the Trans-Himalaya.
|
|
|
Suryawanshi, K. R., Bhatnagar, Y., & Mishra, C. (2009). Why should a grazer browse? Livestock impact on winter resource use by bharal Pseudois nayaur
. Oecologia, , 1–10.
Abstract: Many mammalian herbivores show a temporal diet variation between graminoid-dominated and browse dominated diets. We determined the causes of such a diet shift and its implications for conservation of a medium sized ungulate-the bharal Pseudois nayaur. Past studies show that the bharal diet is dominated by graminoids (>80%) during summer, but the contribution of graminoids declines to about 50% in winter. We tested the predictions generated by two alternative hypotheses explaining the decline: low graminoid availability during winter causes bharal to include browse in their diet; bharal include browse, with relatively higher nutritional quality, in their diet to compensate for the poor quality of graminoids during winter. We measured winter graminoid availability in areas with no livestock grazing, areas with relatively moderate livestock grazing, and those with intense livestock grazing pressures. The chemical composition of plants contributing to the bharal diet was analysed. The bharal diet was quantiWed through signs of feeding on vegetation at feeding locations. Population structures of bharal populations were recorded using a total count method. Graminoid availability was highest in areas without livestock grazing, followed by areas with moderate and intense livestock grazing. The bharal diet was dominated by graminoids (73%) in areas with highest graminoid availability. Graminoid contribution to the bharal diet declined monotonically (50, 36%) with a decline in graminoid availability. Bharal young to female ratio was 3 times higher in areas with high graminoid availability than areas with low graminoid availability. The composition of the bharal winter diet was governed predominantly by the availability of graminoids in the rangelands. Our results suggest that bharal include more browse in their diet during winter due to competition from livestock for graminoids. Since livestock grazing reduces graminoid availability, creation of livestock-free areas is necessary for the conservation of grazing species such as the bharal and its predators including the endangered snow leopard in the Trans-Himalaya.
|
|