|
(2002). Snow Leopard Survival Summit Group Photograph.
|
|
|
Bischof, R., Hameed, S., Ali, H., Kabir, M., Younas, M., Shah, K. A., Din, J. U., Nawaz, M. A. (2013). Using time-to-event analysis to complement hierarchical methods when assessing determinants of photographic detectability during camera trapping. Methods in Ecology and Evolution, .
Abstract: 1. Camera trapping, paired with analytical methods for estimating occupancy, abundance and other ecological parameters, can yield information with direct consequences for wildlife management and conservation. Although ecological information is the primary target of most camera trap studies, detectability influences every aspect from design to interpretation.
2. Concepts and methods of time-toevent analysis are directly applicable to camera trapping, yet this statistical field has thus far been ignored as a way to analyze photographic capture data. to illustrate the use to time-to-event statistics and to better understand how photographic evidence accumulates, we explored patterns in tow related measure of detectability: Detection probability and time to detection. We analyzed camera trap data for three sympatric carnivores ( snow Leopard, red fox and stone marten) in the mountains of northern Pakistan and tested predictions about patterns in detectability across species, sites and time.
3. We found species-specific differences in the magnitude of detectability and the factors influencing it, reinforcing the need to consider determinants of detectability in study design and to account for them during analysis. Photographic detectability of snow leopard was noticeably lower than that of red fox, but comparable to detectability of stone marten. Site-specific attributes such as the presence of carnivore sign ( snow Leopard), terrain ( snow leopard and red fox) and application for lures ( red fox) influenced detectability. For the most part, detection probability was constant over time.
4. Species- specific differences in factors determining detectability make camera trap studies targeting multiple species particularly vulnerable to misinterpretation if the hierarchical origin of the data is ignored. Investigators should consider not only the magnitude of detectability, but also the shape of the curve describing the cumulative process of photographic detection, as this has consequences for both determining survey effort and the election of analytical models. Weighted time-to -event analysis can complement occupancy analysis and other hierarchal methods by providing additional tools for exploring camera trap data and testing hypotheses regarding the temporal aspect of photographic evidence accumulation.
|
|
|
Chapron, G. (2005). Re-wilding: other projects help carnivores stay wild. Nature, 437, 318.
Abstract: Letter to Nature Editor, in response to: In their plea for bringing Pleistocene wildlife to the New World (“Re-wilding North America” Nature 436, 913–914; 2005), Josh Donlan and colleagues do not discuss successful efforts to ensure long-term survival of large carnivores in Africa and Asia. A few examples are given.
|
|
|
Foose, T. J. (1982). A Species Survival PLan (SSP) for snow leopard, Panthera uncia: Genetic and demographic analysis and management. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards, Vol. 3 (Vol. 3, pp. 81–102). Helsinki: Helsinki Zoo.
|
|
|
International Snow Leopard Trust. (2001). Snow Leopard News Fall 2001. Seattle, WA: Islt.
|
|
|
International Snow Leopard Trust. (2002). Snow Leopard News, Spring 2002. Seattle, Washington: Islt.
|
|
|
Jiang, Z. (2005). Snow leopards in the Dulan International Hunting Ground, Qinghai, China.
Abstract: From March to May, 2006œªwe conducted extensive snow leopard surveys in the Burhanbuda Mountain Kunlun Mountains, Qinghai Province, China. 32 linear transect of 5~15 km each, which running through each vegetation type, were surveyed within the study area. A total of 72 traces of snow leopard were found along 4 transects (12.5% of total transects). The traces included pug marks or footprints, scrapes and urine marks. We estimated the average density of wild ungulates in the region was 2.88ñ0.35 individuals km-2(n=29). We emplaced 16 auto2 trigger cameras in different environments and eight photos of snow leopard were shot by four cameras and the capture rate of snow leopard was 71.4%. The minimum snow leopard population size in the Burhanbuda Mountain was two, because two snow leopards were phototrapped by different cameras at almost same time. Simultaneously, the cameras also shot 63 photos of other wild animals, including five photos are unidentified wild animals, and 20 photos of livestock. We evaluated the human attitudes towards snow leopard by interviewing with 27 Tibetan householders of 30 householders live in the study area. We propose to establish a nature reserve for protecting and managing snow leopards in the region. Snow leopard (Uncia uncia) is considered as a unique species because it lives above the snow line, it is endemic to alpines in Central Asia, inhabiting in 12 countries across Central Asia (Fox, 1992). Snow leopard ranges in alpine areas in Qinghai, Xinjiang, Inner Mongolia, Tibet, Gansu and Sichuan in western China (Liao, 1985, 1986; Zhou, 1987; Ma et al., 2002; Jiang & Xu, 2006). The total population and habitat of snow leopards in China are estimated to be 2,000~2,500 individuals and 1,824,316 km2, only 5% of which is under the protection of nature reserves. The cat's current range is fragmented (Zou & Zheng, 2003). Due to strong human persecutions, populations of snow leopards decreased significantly since the end of the 20th century. Thus, the
snow leopards are under the protection of international and domestic laws. From March to May, 2006, we conducted two field surveys in Zhiyu Village, Dulan County in Burhanbuda Mountain, Kunlun Mountains, China to determine the population, distribution and survival status of snow leopards in the area. The aim of the study was to provide ecologic data for snow leopard conservation.
|
|
|
Koshkarev E. (1998). Critical Ranges as Centres of Biodiversity (Vol. N 14).
Abstract: A high percentage of rare species in Central Asia experience limited conditions for distribution. Geographic centers with higher species diversity are generally constrained in terms of territory: they are formed when ranges overlap. But in Central Asia and along its borders with Russia, centers of biodiversity overlap at the very marginal edges of ranges. Central Asian species cross into Russian territory, where desert and steppe are replaced by thick forest. Here the northern borders of their ranges are sharply fragmented and isolated. Typical examples for Central Asia are the ranges of the cheetah (Acinonyx jubatus), Asian leopard (Panthera pardus caucasica), striped hyena (Hyaena hyaena), Bukhara deer (Census elaphus bactrianus), markhor (Capra falconeri), blue sheep (Pseudois nayauf) and argali (Ovis ammon). In Russia are the Altai subspecies of argali, the Siberian argali (O.a.ammon), the mountain goat (Capra sibirica), Mongolian gazelle (Procapra gutturosa), snow leopard (Uncia uncia), Pallas' cat (Felis manul), dhole (Cuon alpinus), grey marmot (Marmota baibacina), Mongolian marmot (M. sibirica) and tolai hare (Lepus tolai). Where the numbers o f individuals has fallen to extreme lows, the most effective mechanism for species survival may be supporting the integrity of ranges, in order to preserve population exchanges between neighboring groups. The geographic location of reserves and other protected territories is vitally important for the survival of Central Asian species, given the acute fragmentation of their ranges. These reserves should include significant, viable centers of population the key places. Wherever the creation of permanent protected territories is impossible, a new tactic must be found, such as introducing temporary limitations on the use of land for agriculture and hunting. But all protected territories, whether temporary or permanent, should be connected, forming a core and periphery. The marginal range areas must not be forgotten, if total protection of endangered populations is to be accomplished.
|
|
|
Koshkarev, E., & Vyrypaev, V. (2000). The snow leopard after the break-up of the Soviet Union. Cat News, 32, 9–11.
|
|
|
Kreuzberg-Mukhina, E., Esipov, A., Aromov, B., Bykova, E., & Vashetko, E. (2002). Snow Leopard and Its Protection in Uzbekistan.. Islt: Islt.
|
|
|
Lutz, H., Hofmann-Lehmann, R., Fehr, D., Leutenegger, C., Hartmann, M., Ossent, P., et al. (1996). Liberation of the wilderness of wild felids bred under human custody: Danger of release of viral infections. Schweizer Archiv fuer Tierheilkunde, 138(12), 579–585.
Abstract: There are several felidae amongst the numerous endangered species. Means of aiding survival are the reintroduction to the wild of animals bred under the auspices of man and their relocation from densely populated to thinly populated areas. It is unlikely that the dangers of such reintroduction or relocation projects have been examined sufficiently in respect to the risks of virus infections confronting individuals kept in zoos or similar situations. This report presents infections may be expected to occur when relo- three examples to illustrate that accidental virus cating and reintroducing wild cats. The first example is the reintroduction of captive snow leopards. Zoo bred snow leopards may be infected with FIV, a virus infection that is highly unlikely to occur in the original hirnalayan highlands of Tibet and China. A second example is of several cases of FIP that occured in European wild cats bred in groups in captivity. The third example mentioned is the relocation of hons from East Africa where all the commonly known feline viruses are wide-spread to the Etosha National Park. In the latter, virus infections such as FIV, FCV and FPV do not occur. The indiscriminate relocation and reintroduction of the wild cats mentioned here harbours a potential of undesirable consequences.
|
|
|
McCarthy, T. (2003). Snow Leopard Survival Strategy. Seattle, WA: International Snow Leopard Trust; Snow Leopard Network.
Abstract: The Snow Leopard Survival Strategy (SLSS) is a blueprint to guide the work of organizations and individuals working to conserve the endangered snow leopard. The SLSS was drafted in a collaborative fashion and includes the input of more than 65 of the world's leaders in snow leopard research and conservation. Implementation of the SLSS is overseen by the Snow Leopard Network (SLN), a partnership of organizations and individuals from government and private sectors who work together for the effective conservation of the snow leopard, its prey, and its natural habitat to the benefit of people and biodiversity
|
|
|
McCarthy, T. M., & Chapron, G. (2003). Snow Leopard Survival Strategy. Seattle, USA: International Snow Leopard Trust and Snow Leopard Network.
Abstract: I. SNOW LEOPARD: REVIEW OF CURRENT KNOWLEDGE AND STATUS
This Snow Leopard Survival Strategy (SLSS) was undertaken to provide comprehensive conservation and research guidelines to ensure a range-wide coordinated effort in the fi ght to save the endangered snow leopard and had the following specific goals: Assess and prioritize threats to snow leopard survival on a geographic basis.
Defi ne and prioritize conservation, education, and policy measures appropriate to alleviate threats.
Prioritize subjects for snow leopard research and identify viable or preferred research methods.
Build a network of concerned scientists and conservationists to facilitate open dialogue and cross-border cooperation.
Gain consensus on a fundamental Snow Leopard Survival Strategy document that will be made available to the range states to aid conservation planning at national and local levels.
The highly participatory process started with a survey of specialists designed to gather information on perceived threats to snow leopards, appropriate actions to address threats, knowledge gaps, protected area status, policy and law issues, impediments to achieving conservation of snow leopards, and cultural relevance of snow leopards. Drafts of a Strategy were circulated and then the Snow Leopard Survival Summit was convened in Seattle, USA from 21-26 May 2002 and was attended by 58 of the specialists to debate issues and refi ne the Strategy. This SLSS document is the end product of that process. Background on the snow leopard The snow leopard (Uncia uncia) is a member of the Felidae subfamily Pantherinae and on the basis of morphology and behavior it is placed alone in a separate genus. They are found in 12 countries across Central Asia (China, Bhutan, Nepal, India, Pakistan, Afghanistan, Tajikistan, Uzbekistan, Kyrgyzstan, Kazakhstan, Russia, and Mongolia). China contains as much as 60% of the snow leopard's potential habitat. Inaccessible and difficult terrain, along with the secretive nature of this rare cat helps account for the fact that large parts of its range have yet to be surveyed. Between 4,500 and 7,350 snow leopards are thought to occur within a total potential habitat area of 1,835,000 km2. Snow leopards are generally solitary and mating usually occurs between late January and midMarch, and one to five cubs are born after a gestation period of 93 to 110 days, generally in June or July. Snow leopards are closely associated with the alpine and subalpine ecological zones, preferring broken, rocky terrain with vegetation that is dominated by shrubs or grasses. Home range size and shape is not well known. The home range size of five snow leopards in prime habitat in Nepal ranged from 12 to 39 km2, with substantial overlap between individuals and sexes. In Mongolia, where food resources may be scarcer, home ranges of both males and females exceeded 400 km2. Snow leopards are opportunistic predators capable of killing prey up to three times their own weight. They will also take small prey such as marmot or chukar partridge. In general, their most commonly taken prey consists of wild sheep and goats
(including blue sheep, Asian ibex, markhor, and argali). Adult snow leopards kill a large prey animal every 10-15 days, and remained on the kill for an average of 3-4 days, and sometimes up to a week. Predation on livestock can be significant, which often results in retribution killing by herders. Snow Leopards are listed as Endangered on the
IUCN Red List in that they do not meet the standards of Critically Endangered but are projected to decline by 50% or more over next 3 generations due to potential levels of exploitation (trade in pelts/bones and conflict with
livestock), and due to declining: 1) area of occupancy, 2) extent of occurrence, and 3) quality of habitat (prey depletion). They appear in Appendix I of both CITES and the Convention on Conservation of Migratory Species of
Wild Animals (CMS). Snow Leopards are protected nationally over most of its range, with the probable exception of Afghanistan. However, in some countries the relevant legislation may not always be very effective, e.g. because penalties are too low to function as deterrent, or they contain some significant loopholes.
II. THREATS AND CONSERVATION ACTIONS
Regional Assessment
This document attempts to list and discuss the threats, conservation actions and information needs pertinent to snow leopard survival. However, these vary substantially across the vast extent of snow leopard range, so no prescription will be universally applicable. We used a regional approach and for purposes of grouping areas where conditions may be similar, we looked at geography, political boundaries, cultural/religious influences, and rural livelihoods. Within that framework we defined four broad regions:
Himalaya (HIMLY),
Karakorum/Hindu Kush (KK/HK),
Commonwealth of Independent States and W. China (CISWC),
The Northern Range of Russia, Mongolia and N. China (NRANG) SNOW LEOPARD SURVIVAL STRATEGY
Threats to Snow Leopard Survival
A key component of the SLSS process was to identify threats to long-term snow leopard survival across their range. The following list is the result of extensive consultations with stakeholders in Asia and the expert group at the SLSS Summit. Threats are grouped into four broad categories 1) Habitat and Prey related, 2) Direct Killing of Snow Leopards, 3) Policy and Awareness, and 4) Other Issues.
List of Threats
Category 1: Habitat and Prey Related
1.1 Habitat Degradation and Fragmentation
1.2 Reduction of Natural Prey due to Illegal Hunting
1.3 Reduction of Natural Prey due to Legal Hunting
1.4 Reduction of Natural Prey due to Competition with Livestock
1.5 Reduction of Natural Prey due to Disease
1.6 Fencing that Disrupts Natural Migration
Category 2: Direct Killing or Removal of Snow Leopards
2.1 Killing of Snow Leopards in Retribution for Livestock depredation
2.2 Poaching Snow Leopards for Trade in Hides or Bones
2.3 Museum Collection of Live Animals
2.4 Traditional Hunting of Snow Leopards
2.5 Secondary Poisoning and Trapping of Snow Leopards
2.6 Diseases of Snow Leopards
Category 3: Policy and Awareness
3.1 Lack of Appropriate Policy
3.2 Lack of Effective Enforcement
3.3 Lack of Trans-boundary Cooperation
3.4 Lack of Institutional Capacity
3.5 Lack of Awareness among Local People
3.6 Lack of Awareness among Policy Makers
Category 4: Other Issues
4.1 War and Related Military Activities
4.2 Climate Change
4.3 Human Population Growth and Poverty (indirect threat)
Potential Actions to Address Threats
Several methods are identified and elaborated in this document and they include:
Grazing Management: Promote livestock grazing practices that reduce impacts on native wildlife, in particular snow leopard prey species.
Wildlife-based Ecotourism: Establishing wildlife based tourism that provides jobs and financial benefits to local people will add economic value to wildlife and create incentives to protect the resource.
Cottage Industry: Provide income generation opportunities for communities in snow leopard habitat through handicraft manufacture and marketing opportunities with direct and transparent linkages to wildlife conservation via contracts that provides positive incentives for compliance.
Ungulate Trophy Hunting Programs: Establish or restructure trophy hunting programs that are sustainable, well monitored and provide return to local people as an incentive to protect ungulates. Community co-management of hunting program should be encouraged where ever appropriate.
Reducing Poaching and Trade in Snow Leopard Parts:
Determine location, nature and extent of snow leopard poaching for trade and bring pressure, both legal and educational, to limit same.
Reducing Livestock Depredation by Snow Leopards:
Encourage livestock husbandry practices that reduce depredation by snow leopards and other predators.
Animal Husbandry: Provide training in animal husbandry and veterinary care to improve monetary return at lower stock levels, limit exposure to predation, and reduce impacts on pasture and rangelands.
Conservation Education and Awareness: Raise awareness of snow leopard conservation issues, concerns, need for action, legal matters, etc, through variety of media among different audiences.
III. RESEARCH AND INFORMATION NEEDS
During the process of listing the threats to snow leopards and the required conservation actions, a set of information needs was also identified. Hence, the list below encompasses the knowledge required to carry-out urgent conservation actions.
Master List of Information Needs
R.1 Snow leopard distribution and “hot spots”
R.2 Snow leopard migration and dispersal routes
R.3 Snow leopard population size
R.4 Snow leopard population trends and factor responsible for changes
R.5 Protected Area coverage extent and representation of habitats (gap analysis)
R.6 Agents of habitat degradation and relative impacts
R.7 Snow leopard prey relationships
R.8 Prey species distribution and “hot spots”
R.9 Prey population baseline and trends
R.10 Dynamics of illegal ungulate hunting (sources, local need, uses, trade, etc.)
R.11 Dynamics of legal ungulate harvest and baseline statistics (sex/age, effort, trophy size, etc.)
R.12 Wild ungulate livestock interactions (competition)
R.13 Ungulate disease type, areas of occurrence, prevalence, virulence, treatment
R.14 Snow leopard poaching levels
R.15 Illegal trade in wildlife parts market demand, sources and routes, value, etc.
R.16 Livestock depredation rates
SNOW LEOPARD SURVIVAL STRATEGY | xi
R.17 Livestock depredation causes
R.18 Grazing pressure and range conditions
R.19 Snow leopard disease type, areas of occurrence, prevalence, virulence, treatment
R.20 Snow leopard home-range size and habitat use
R.21 Snow leopard social structure and behavior
R.22 Snow leopard population genetics
R.23 Snow leopard food habits
R.24 Snow leopard relationship to other predators
R.25 Economic valuation of snow leopards
R.26 Snow leopard monitoring techniques development/improvement
R.27 Socio-economic profiling of herder communities in snow leopard habitat
R.28 Methods to alleviate impacts of war
R.29 Livestock and human population status and trends
R.30 Analysis of existing policies and laws
R.31 Human attitudes to snow leopards
IV. COUNTRY ACTION PLANNING
The SLSS should be seen as a tool to aid in the development of country-specifi c Action Plans. In general Action
Planning leaders should review the SLSS and then:
Analyze the problems and choose the proper scale,
Identify the key stakeholders and integrate them into the planning process at the beginning, (i.e. ensure a broadly participatory process),
Choose a multi-level approach if the problems and stakeholders are particularly diverse,
Seek to identify achievable and appropriate actions,
Build monitoring of results into the Plan.
The Action Planning process need not be done in a vacuum. The Snow Leopard Network (see below), can provide much needed assistance in terms of expertise and advice during the planning process. Collectively, the SLN membership has experience in nearly every area of snow leopard related conservation, research, education, and policy. They can be approached for assistance through the International Snow Leopard Trust, 4649 Sunnyside
Ave. N., Suite 325, Seattle, Washington, 98103, USA, on their website http://www.snowleopard.org/sln/ or via email at <info@snowleopard.org>.
V. TAKING THE SLSS FORWARD
A key outcome of the SLSS Workshop was the creation of the Snow Leopard Network (SLN). The SLN is a partnership of organizations and individuals from government and private sector who work together for the effective conservation of the snow leopard, its prey, and their natural habitat to the benefi t of people and biodiversity.
The initial members of the SLN are the specialist who worked together on the SLSS. Carrying the SLSS forward was the impetus for developing the Network.
|
|
|
Ming, M., Yun, G., & Bo, W. (2008). Chinese snow leopard team goes into action. Man & the Biosphere, 54(6), 18–25.
Abstract: China, the world's most populous country, also contains the largest number of Snow Leopards of any country in the world. But the survey and research of the snow leopard had been very little for the second half of the 20th century. Until recent years, the members of Xinjiang Snow Leopards Group (XSLG/SLT/XFC) , the Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences have been tracking down the solitary animal. The journal reporter does a face-to-face interview with professor Ma Ming who is a main responsible expert of the survey team. By the account of such conversation, we learn the achievements, advances and difficulty of research of snow leopards in the field, Tianshan and Kunlun, Xinjiang, the far west China, and we also know that why the team adopt the infrared camera to capture the animals. Last but not least professor talked about the survival menace faced by the Snow Leopards in Xinjiang.
|
|
|
Roth, T. L., Howard, J. G., Donoghue, A. M., Swanson, W. F., & Wildt, D. E. (1994). Function and culture requirements of snow leopard (Panthera uncia) spermatozoa in vitro. J Reprod Fertil, 101(3), 563–569.
Abstract: Electroejaculates from eight snow leopards were used to determine how the motility of spermatozoa was influenced by (i) type of media (Ham's F10, PBS, human tubal fluid or RPMI-1640); (ii) holding temperature (23 degrees C versus 37 degrees C); (iii) washing of spermatozoa and (iv) a sperm metabolic enhancer, pentoxifylline. The duration of sperm motility was assessed by evaluating samples in each treatment every hour for 6 h and a sperm motility index (a value combining percentage sperm motility and rate of forward progression) calculated. Spermatozoa from the Ham's F10, PBS and PBS plus pentoxifylline treatments were also co-incubated with zona-intact, domestic cat eggs that were fixed and evaluated for spermatozoa bound to the zona pellucida, penetrating the outer and inner layers of the zona pellucida and within the perivitelline space. During the 6 h co-incubation, the sperm motility index in PBS with pentoxifylline was greater (P < 0.05) than in PBS alone which, in turn, was greater (P < 0.05) than in the other three test media. Washing the spermatozoa enhanced (P < 0.05) motility in both PBS and PBS plus pentoxifylline relative to unwashed samples, but there was no effect (P > 0.05) of holding temperature. Pentoxifylline supplementation enhanced (P < 0.05) the proportion of cat eggs with bound, but not penetrated, snow leopard spermatozoa in the inner layer of the zona pellucida, and there were no spermatozoa in the perivitelline space.(ABSTRACT TRUNCATED AT 250 WORDS)
|
|
|
ud Din, J. (2008). Assessing the Status of Snow Leopard in Torkhow Valley, District Chitral, Pakistan: Final Technical Report.
Abstract: This study was aimed at assessing the status of Snow leopard, its major prey base, and the extent of human-Snow leopard conflict and major threats to the wildlife in north Chitral (Torkhow valley) Pakistan. Snow leopard occurrence was conformed through sign transect surveys i.e. SLIMS. Based on the data collected the number of Snow leopards in this survey block (1022 Kmý) is estimated to be 2-3 animals. Comparing this estimate with the available data from other parts of the district the population of snow leopard in Chitral district was count to be 36 animals. Livestock depredation reports collected from the area reflect the existence of human-snow leopard conflict and 138 cases were recorded affecting 102 families (in a period of eight years, 2001-2008). Ungulates (Himalayan Ibex) rut season surveys were conducted in coordination with NWFP Wildlife department. A total of 429 animals were counted using direct count (point method) surveys. Other snow leopard prey species recorded include marmot, hare, and game birds. Signs of other carnivores i.e. wolf, jackal, and fox were also noticed. Major threats to the survival of wildlife especially snow leopard reckoned include retaliatory killing (Shooting, Poisoning), poaching, loss of natural prey, habitat degradation (over grazing, fodder and fuel wood collection), lack of awareness, and over population. GIS map of the study area was developed highlighting the area searched for Snow leopard and its prey species. Capacity of the Wildlife Department staff was built in conducting SLIMS and ungulate surveys through class room and on field training. Awareness regarding the importance of wildlife conservation was highlighted to the students, teachers and general community through lectures and distribution of resource materials developed by WWF-Pakistan.
|
|
|
Wharton, D. (1997). Endangered Species Update. Endangered Species Update, 14(11), 13.
Abstract: The snow leopard is listed as endangered, although most of its high mountain habitat remains untouched. However the ability of humans to exploit wildlife has led to it being endangered. Serious attempts to keep snow leopards in captivity began in 1891, but it was not until the 1950s that cubs survived long enough to become breeders. The American Zoo and Aquarium Association (ASA) Snow Leopard Species Survival Plan (SSP) was set up in 1984, achieving success with breeding goals.
|
|
|
Wharton, D., & Freeman, H. (1988). The Snow Leopard in North America: Captive Breeding Under the Species Survival PLan. In H.Freeman (Ed.), (pp. 131–136). India: International Snow Leoaprd Trust and WIldlife Institute of India.
|
|