|
(2002). Snow Leopard Survival Summit Group Photograph.
|
|
|
Bischof, R., Hameed, S., Ali, H., Kabir, M., Younas, M., Shah, K. A., Din, J. U., Nawaz, M. A. (2013). Using time-to-event analysis to complement hierarchical methods when assessing determinants of photographic detectability during camera trapping. Methods in Ecology and Evolution, .
Abstract: 1. Camera trapping, paired with analytical methods for estimating occupancy, abundance and other ecological parameters, can yield information with direct consequences for wildlife management and conservation. Although ecological information is the primary target of most camera trap studies, detectability influences every aspect from design to interpretation.
2. Concepts and methods of time-toevent analysis are directly applicable to camera trapping, yet this statistical field has thus far been ignored as a way to analyze photographic capture data. to illustrate the use to time-to-event statistics and to better understand how photographic evidence accumulates, we explored patterns in tow related measure of detectability: Detection probability and time to detection. We analyzed camera trap data for three sympatric carnivores ( snow Leopard, red fox and stone marten) in the mountains of northern Pakistan and tested predictions about patterns in detectability across species, sites and time.
3. We found species-specific differences in the magnitude of detectability and the factors influencing it, reinforcing the need to consider determinants of detectability in study design and to account for them during analysis. Photographic detectability of snow leopard was noticeably lower than that of red fox, but comparable to detectability of stone marten. Site-specific attributes such as the presence of carnivore sign ( snow Leopard), terrain ( snow leopard and red fox) and application for lures ( red fox) influenced detectability. For the most part, detection probability was constant over time.
4. Species- specific differences in factors determining detectability make camera trap studies targeting multiple species particularly vulnerable to misinterpretation if the hierarchical origin of the data is ignored. Investigators should consider not only the magnitude of detectability, but also the shape of the curve describing the cumulative process of photographic detection, as this has consequences for both determining survey effort and the election of analytical models. Weighted time-to -event analysis can complement occupancy analysis and other hierarchal methods by providing additional tools for exploring camera trap data and testing hypotheses regarding the temporal aspect of photographic evidence accumulation.
|
|
|
Chapron, G. (2005). Re-wilding: other projects help carnivores stay wild. Nature, 437, 318.
Abstract: Letter to Nature Editor, in response to: In their plea for bringing Pleistocene wildlife to the New World (“Re-wilding North America” Nature 436, 913–914; 2005), Josh Donlan and colleagues do not discuss successful efforts to ensure long-term survival of large carnivores in Africa and Asia. A few examples are given.
|
|
|
Foose, T. J. (1982). A Species Survival PLan (SSP) for snow leopard, Panthera uncia: Genetic and demographic analysis and management. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards, Vol. 3 (Vol. 3, pp. 81–102). Helsinki: Helsinki Zoo.
|
|
|
International Snow Leopard Trust. (2001). Snow Leopard News Fall 2001. Seattle, WA: Islt.
|
|
|
International Snow Leopard Trust. (2002). Snow Leopard News, Spring 2002. Seattle, Washington: Islt.
|
|
|
Jiang, Z. (2005). Snow leopards in the Dulan International Hunting Ground, Qinghai, China.
Abstract: From March to May, 2006œªwe conducted extensive snow leopard surveys in the Burhanbuda Mountain Kunlun Mountains, Qinghai Province, China. 32 linear transect of 5~15 km each, which running through each vegetation type, were surveyed within the study area. A total of 72 traces of snow leopard were found along 4 transects (12.5% of total transects). The traces included pug marks or footprints, scrapes and urine marks. We estimated the average density of wild ungulates in the region was 2.88ñ0.35 individuals km-2(n=29). We emplaced 16 auto2 trigger cameras in different environments and eight photos of snow leopard were shot by four cameras and the capture rate of snow leopard was 71.4%. The minimum snow leopard population size in the Burhanbuda Mountain was two, because two snow leopards were phototrapped by different cameras at almost same time. Simultaneously, the cameras also shot 63 photos of other wild animals, including five photos are unidentified wild animals, and 20 photos of livestock. We evaluated the human attitudes towards snow leopard by interviewing with 27 Tibetan householders of 30 householders live in the study area. We propose to establish a nature reserve for protecting and managing snow leopards in the region. Snow leopard (Uncia uncia) is considered as a unique species because it lives above the snow line, it is endemic to alpines in Central Asia, inhabiting in 12 countries across Central Asia (Fox, 1992). Snow leopard ranges in alpine areas in Qinghai, Xinjiang, Inner Mongolia, Tibet, Gansu and Sichuan in western China (Liao, 1985, 1986; Zhou, 1987; Ma et al., 2002; Jiang & Xu, 2006). The total population and habitat of snow leopards in China are estimated to be 2,000~2,500 individuals and 1,824,316 km2, only 5% of which is under the protection of nature reserves. The cat's current range is fragmented (Zou & Zheng, 2003). Due to strong human persecutions, populations of snow leopards decreased significantly since the end of the 20th century. Thus, the
snow leopards are under the protection of international and domestic laws. From March to May, 2006, we conducted two field surveys in Zhiyu Village, Dulan County in Burhanbuda Mountain, Kunlun Mountains, China to determine the population, distribution and survival status of snow leopards in the area. The aim of the study was to provide ecologic data for snow leopard conservation.
|
|
|
Koshkarev E. (1998). Critical Ranges as Centres of Biodiversity (Vol. N 14).
Abstract: A high percentage of rare species in Central Asia experience limited conditions for distribution. Geographic centers with higher species diversity are generally constrained in terms of territory: they are formed when ranges overlap. But in Central Asia and along its borders with Russia, centers of biodiversity overlap at the very marginal edges of ranges. Central Asian species cross into Russian territory, where desert and steppe are replaced by thick forest. Here the northern borders of their ranges are sharply fragmented and isolated. Typical examples for Central Asia are the ranges of the cheetah (Acinonyx jubatus), Asian leopard (Panthera pardus caucasica), striped hyena (Hyaena hyaena), Bukhara deer (Census elaphus bactrianus), markhor (Capra falconeri), blue sheep (Pseudois nayauf) and argali (Ovis ammon). In Russia are the Altai subspecies of argali, the Siberian argali (O.a.ammon), the mountain goat (Capra sibirica), Mongolian gazelle (Procapra gutturosa), snow leopard (Uncia uncia), Pallas' cat (Felis manul), dhole (Cuon alpinus), grey marmot (Marmota baibacina), Mongolian marmot (M. sibirica) and tolai hare (Lepus tolai). Where the numbers o f individuals has fallen to extreme lows, the most effective mechanism for species survival may be supporting the integrity of ranges, in order to preserve population exchanges between neighboring groups. The geographic location of reserves and other protected territories is vitally important for the survival of Central Asian species, given the acute fragmentation of their ranges. These reserves should include significant, viable centers of population the key places. Wherever the creation of permanent protected territories is impossible, a new tactic must be found, such as introducing temporary limitations on the use of land for agriculture and hunting. But all protected territories, whether temporary or permanent, should be connected, forming a core and periphery. The marginal range areas must not be forgotten, if total protection of endangered populations is to be accomplished.
|
|
|
Koshkarev, E., & Vyrypaev, V. (2000). The snow leopard after the break-up of the Soviet Union. Cat News, 32, 9–11.
|
|
|
Kreuzberg-Mukhina, E., Esipov, A., Aromov, B., Bykova, E., & Vashetko, E. (2002). Snow Leopard and Its Protection in Uzbekistan.. Islt: Islt.
|
|