|
Ale S. (2005). Have snow leopards made a comeback to the Everest region of Nepal?.
Abstract: In the 1960s, the endangered snow leopard was locally extirpated from the Sagarmatha (Mt. Everest) region of Nepal. In this Sherpa-inhabited high Himalaya, the flourishing tourism since the ascent of Mt Everest in 1953, has caused both prosperity and adverse impacts, the concern that catalyzed the establishment of Mt. Everest National Park in the region in 1976. In the late 1980s, there were reports that some transient snow leopards may have visited the area from adjoining Tibet, but no biological surveys exist to confirm the status of the cats and their prey. Have snow leopards finally returned to the top of the world? Exploring this question was the main purpose of this research project. We systematically walked altogether 24 sign transects covering over 13 km in length in three valleys, i.e. Namche, Phortse and Gokyo, of the park, and counted several snow leopard signs. The results indicated that snow leopards have made a comeback in the park in response to decades of protective measures, the virtual cessation of hunting and the recovery of the Himalayan tahr which is snow leopard's prey. The average sign density (4.2 signs/km and 2.5 sign sites/km) was comparable to that reported from other parts of the cats' range in the Himalaya. On this basis, we estimated the cat density in the Everest region between 1 to 3 cats per 100 sq km, a figure that was supported by different sets of pugmarks and actual sightings of snow leopards in the 60 km2 sample survey area. In the study area, tahr population had a low reproductive rate (e.g. kids-to-females ratio, 0.1, in Namche). Since predators can influence the size and the structure of prey species populations through mortality and through non-lethal effects or predation risk, snow leopards could have been the cause of the population dynamics of tahr in Sagarmtha, but this study could not confirm this speculation for which further probing may be required.
|
|
|
Blomqvist, L. (1998). Analysis of the global captive Snow leopard, Uncia uncia, population in 1996. International Pedigree Book of Snow Leopards, Uncia uncia, 7, 6–20.
|
|
|
Chandra, S., & Laughlin, D. C. (1975). Virus-like particles in cystic mammary adenoma of a snow leopard. Cancer Res, 35(11 Pt 1), 3069–3074.
Abstract: Virus-like particles were observed in the giant cells of a mammary adenoma of a snow leopard kept in captivity. Particles that measured 115 to 125 nm in diameter budded from the lamella of endoplasmic reticulum and were studded on their inner surfaces with dense granules (approximately 12 nm) that gave them their unique ultrastructural morphology. Such particles were not observed extracellularly. Type B or type C particles were not seen in the tumor tissue.
|
|
|
Feh, C. (2001). Ecology and social structure of the Gobi khulan Equus hemionus subsp. in the Gobi B. National Park, Mongolia. Biological Conservation, 101, 51–61.
Abstract: The status of the Gobi khulan Equus hemionus subsp. is recorded as ``insufficiently known'' in the Species Survival Commission's Equid Action Plan. Recent counts confirm that Mongolia holds the most important population of the whole species. Since 1953, the animals have benefited from a protected status, but this is now challenged. A 5-year study in the B part of the Gobi National Park on one subpopulation showed that it has remained stable over the past 15 years with an adequate mean reproductive rate of 15% and a 50% survival rate over the first year. Age/sex related mortality and prey analysis indicate that wolf predation probably has some impact on the population, in particular for 4-6-year-olds of both sexes at the start of reproduction. Desert and mountain steppes are the khulan's year-round preferred habitat, but `oases', play an important role at the beginning of lactation. Anthropogenic factors affect both home range and habitat use through direct intervention or permanent occupation of the scarce water sources. Khulans of this subpopulation, unlike other Asian and African wild asses, form year-round stable, non-territorial families. These families and all-male groups join together into ``bands'' in winter, and herds of several hundred animals, where reproductive rate is highest, form throughout the year. The existence of such herds may thus be critical for the breeding success of the population. Our study provides the first detailed quantitative data for this subspecies, which will help to monitor changes in the future. # 2001 Elsevier Science Ltd. All rights reserved.
|
|
|
Gosselin, S. J., Loudy, D. L., Tarr, M. J., Balistreri, W. F., Setchell, K. D., Johnston, J. O., et al. (1988). Veno-occlusive disease of the liver in captive cheetah. Vet Pathol, 25(1), 48–57.
Abstract: Liver tissues from 126 captive cheetah were evaluated by light microscopy and histochemistry; eight animals were evaluated by electron microscopy. The main hepatic lesion, a vascular lesion resembling veno- occlusive disease (VOD) of the liver and characterized by subendothelial fibrosis and proliferation of smooth muscle-like cells in the central veins, was seen in 60% of the sexually mature cheetah. Although this hepatic vascular lesion was seen in cheetah as young as 1 year of age, the most severe lesions, usually associated with liver failure, were found in cheetah between the ages of 6 and 11. There was no sex predisposition, and in approximately 40% of the VOD cases, liver disease was not suspected clinically or at necropsy. VOD was found in other felidae, especially in the snow leopard. High levels of vitamin A in livers, as well as in diets of the cheetah, could be a contributing factor in the development of VOD in some groups of cheetah.
|
|
|
Hacker, C., Atzeni, L., Munkhtsog, B., Munkhtsog, B., Galsandorj, N., Zhang, Y., Liu, Y., Buyanaa, C., Bayandonoi, G., Ochirjav, M., Farrington, J. D., Jevit, M., Zhang, Y., Wu, L. Cong, W., Li, D., Gavette, C., Jackson, R., Janecka, J. E. (2022). Genetic diversity and spatial structures of snow leopards (Panthera uncia) reveal proxies of connectivity across Mongolia and northwestern China. Landscape Ecology, , 1–19.
Abstract: Understanding landscape connectivity and population genetic parameters is imperative for threatened species management. However, such information is lacking for the snow leopard (Panthera uncia). This study sought to explore hierarchical snow leopard gene flow patterns and drivers of genetic structure in Mongolia and China. A total of 97 individuals from across Mongolia and from the north-eastern edge of the Qinghai-Tibetan Plateau in Gansu Province to the middle of Qinghai Province in China were genotyped across 24 microsatellite loci. Distance-based frameworks were used to determine a landscape scenario best explaining observed genetic structure. Spatial and non-spatial methods were used to investigate fine-scale autocorrelation and similarity patterns as well as genetic structure and admixture. A genetic macro-division between populations in China and Mongolia was observed, suggesting that the Gobi Desert is a substantial barrier to gene flow. However, admixture and support for a resistance-based mode of isolation suggests connective routes that could facilitate movement. Populations in Mongolia had greater connectivity, indicative of more continuous habitat. Drivers of genetic structure in China were difficult to discern, and fine-scale sampling is needed. This study elucidates snow leopard landscape connectivity and helps to prioritize conservation areas. Although contact zones may have existed and occasional crossings can occur, establishing corridors to connect these areas should not be a priority. Focus should be placed on maintaining the relatively high connectivity for snow leopard populations within Mongolia and increasing research efforts in China.
|
|
|
Koju, N. P., Buzzard, P., Shrestha, A., Sharma, S., He, K., Li, J., Kyes, R. C., Chen, C., Beisch, W. V. (2024). Habitat overlap and interspecific competition between snow leopards and leopards in the Central Himalayas of Nepal. Global Ecology and Conservation, 52(e02953), 1–13.
Abstract: Traditionally, leopards (Panthera pardus) and snow leopards (P. uncia) occupy distinct habitats. This study explored the coexistence of snow leopards and leopards within the Gaurishankar Conservation Area in Lapchi Valley, Nepal. Both leopard species are crucial for ecosystem stability as apex predators. Camera trapping data from 2018 to 2023 confirmed twenty species of wild mammals and two species of domesticated livestock in Lapchi Valley, where snow leopards have strong spatio-temporal overlap (Δ→0.74) with leopards. Snow leopards exhibited distinct temporal patterns before and after the leopards’ arrival in the study area. Generalized Linear Mixed Effect Models (GLMM) revealed seasonal and prey-type associations with leopard presence, highlighting the snow leopards’ preference for cold season and wild prey. Leopards, however, did
not show a significant seasonal preference. The findings highlight Lapchi Valley’s ecological richness as well as the need for comprehensive conservation strategies. The record of spatial and temporal overlap between the leopards and snow leopards provides important insights into the behavioral dynamics of apex predators and the need for targeted biodiversity conservation in the face of changing ecosystems. The study emphasizes the valley’s transboundary significance, calling for collaborative efforts between Nepal and China to help promote effective conservation management. Lapchi Valley’s isolation, traditional and religious importance, and recent infrastructure developments further impact the conservation challenges.
|
|
|
Korablev, M. P., Poyarkov, A. D., Karnaukhov, A. S., Zvychaynaya, E. Y., Kuksin, A. N., Malykh, S. V., Istomov, S. V., Spitsyn, S. V., Aleksandrov, D. Y., Hernandez-Blanco, J. A., Munkhtsog, B., Munkhtogtokh, O., Putintsev, N. I., Vereshchagin, A. S., Becmurody, A., Afzunov, S., Rozhnov, V. V. (2021). Large-scale and fine-grain population structure and genetic diversity of snow leopards (Panthera uncia Schreber, 1776) from the northern and western parts of the range with an emphasis on the Russian population. Conservation Genetics, .
Abstract: The snow leopard (Panthera uncia Schreber, 1776) population in Russia and Mongolia is situated at the northern edge of the range, where instability of ecological conditions and of prey availability may serve as prerequisites for demographic instability and, consequently, for reducing the genetic diversity. Moreover, this northern area of the species distribution is connected with the western and central parts by only a few small fragments of potential habitats in the Tian-Shan spurs in China and Kazakhstan. Given this structure of the range, the restriction of gene flow between the northern and other regions of snow leopard distribution can be expected. Under these conditions, data on population genetics would be extremely important for assessment of genetic diversity, population structure and gene flow both at regional and large-scale level. To investigate large-scale and fine-grain population structure and levels of genetic diversity we analyzed 108 snow leopards identified from noninvasively collected scat samples from Russia and Mongolia (the northern part of the range) as well as from Kyrgyzstan and Tajikistan (the western part of the range) using panel of eight polymorphic microsatellites. We found low to moderate levels of genetic diversity in the studied populations. Among local habitats, the highest heterozygosity and allelic richness were recorded in Kyrgyzstan (He = 0.66 ± 0.03, Ho = 0.70 ± 0.04, Ar = 3.17) whereas the lowest diversity was found in a periphery subpopulation in Buryatia Republic of Russia (He = 0.41 ± 0.12, Ho = 0.29 ± 0.05, Ar = 2.33). In general, snow leopards from the western range exhibit greater genetic diversity (He = 0.68 ± 0.04, Ho = 0.66 ± 0.03, Ar = 4.95) compared to those from the northern range (He = 0.60 ± 0.06, Ho = 0.49 ± 0.02, Ar = 4.45). In addition, we have identified signs of fragmentation in the northern habitat, which have led to significant genetic divergence between subpopulations in Russia. Multiple analyses of genetic structure support considerable genetic differentiation between the northern and western range parts, which may testify to subspecies subdivision of snow leopards from these regions. The observed patterns of genetic structure are evidence for delineation of several management units within the studied populations, requiring individual approaches for conservation initiatives, particularly related to translocation events. The causes for the revealed patterns of genetic structure and levels of genetic diversity are discussed.
|
|
|
Mongolian Biosphere & Ecology Association. (2010). Mongolian Biosphere & Ecology Association Report March 2010.
Abstract: In accordance with order of the Ministry of Nature and Tourism,
zoologists of our association have made surveys in three ways such as
reasons why snow leopards attack domestic animals, “Snow leopard” trial
operation to count them and illegal hunting in territories of Khovd,
Gobi-Altai, Bayankhongor, Uvurkhangai and Umnugobi provinces from
September 2009 to January 2010. As result of these surveys it has made
the following conclusions in the followings: Reason to hunt them illegally: the principal reason is that
administrative units have been increased and territories of
administrative units have been diminished. There have been four
provinces in 1924 to 1926, 18 since 1965, 21 since 1990. Such situation
limits movements of herdsmen completely and pastures digressed much than
ever before. As result of such situation, 70% of pastures become desert.
Such digression caused not only heads of animals and also number of
species. Guarantee is that birds such as owls, cuckoo, willow grouse in
banks of Uyert river, Burkhanbuudai mountain, located in Biger soum,
Gobi-Altai province, which are not hunted by hunters, are disappearing
in the recent two decades. For that reason we consider it is urgently
necessary for the government to convert administrative unit structures
into four provinces. This would influence herdsmen moving across
hundreds km and pastures could depart from digression.
Second reason: cooperative movement won. The issues related to management and strengthening of national
cooperatives, considered by Central Committee of Mongolian People's
Revolutionary Party in the meeting in March 1953 was the start of
cooperatives' movement. Consideration by Yu. Tsedenbal, chairman of
Ministers Council, chairman of the MPRP, on report "Result of to unify
popular units and some important issues to maintain entity management of
agricultural cooperatives" in the fourth meeting by the Central
Committee of Mongolian People's Revolutionary Party /MPRP/ on December
16-17, 1959, proclaimed complete victory of cooperative. At the end of
1959, it could unify 767 small cooperative into 389 ones, unify 99.3 %
of herdsmen and socialize 73.3 % of animals. The remaining of animals
amount 6 million 163 thousands animals, and equals to 26.7% of total
animals. This concerned number of animals related to the article
mentioned that every family should have not more that 50 animals in
Khangai zone and not more 75 animals in Gobi desert. It shows that such
number could not satisfy needs of family if such number is divided into
five main animals in separating with reproduction animals and adult
animals. So herdsmen started hunt hoofed animals secretly and illegally
in order to satisfy their meat needs. Those animals included main food
of snow leopard such as ibex, wild sheep, and marmot. Third reason is that the state used to hunt ibex, which are main
nutrition of snow leopards, every year. The administrative unit of the
soum pursued policy to hunt ibex in order to provide meat needs of
secondary schools and hospitals. That's why this affected decrease of
ibex population. Preciously from 1986 to 1990 the permissions to hunt
one thousands of wild sheep and two thousands of ibexes were hunt for
domestic alimentary use every year. Not less than 10 local hunters of every soum used to take part in big
game of ibexes. Also they hunted many ibexes, chose 3-10 best ibexes and
hid them in the mountains for their consummation during hunting.
Fourth reason: hunting of wolves. Until 1990 the state used to give
prizes to hunter, who killed a wolf in any seasons of the year. Firstly
it offered a sheep for the wolf hunter and later it gave 25 tugrugs /15
USD/. Every year, wolf hunting was organized several times especially
picking wolf-cubs influenced spread and population of wolves. So snow
leopard came to the places where wolves survived before and attack
domestic animals. Such situation continued until 1990. Now population of
ibexes has decreased than before 1990 since the state stopped hunting
wolves, population of wolves increased in mountainous zones. We didn't
consider it had been right since it was natural event. However
population of ibexes decreased. Fifth reason: Global warming. In recent five years it has had a drought
and natural disaster from excessive snow in the places where it has
never had such natural disasters before. But Mongolia has 40 million
heads of domestic animals it has never increased like such quantity in
its history before. We consider it is not incorrect that decrease of
domestic animals could give opportunities to raise population of wild
animals. Our next survey is to make attempt to fix heads of snow leopards
correctly with low costs.
|
|
|
Shrestha, B. (2008). Prey Abundance and Prey Selection by Snow Leopard (uncia uncia) in the Sagarmatha (Mt. Everest) National Park, Nepal.
Abstract: Predators have significant ecological impacts on the region's prey-predator dynamic and community structure through their numbers and prey selection. During April-December 2007, I conducted a research in Sagarmatha (Mt. Everest) National Park (SNP) to: i) explore population status and density of wild prey species; Himalayan tahr, musk deer and game birds, ii) investigate diet of the snow leopard and to estimate prey selection by snow leopard, iii) identify the pattern of livestock depredation by snow leopard, its mitigation, and raise awareness through outreach program, and identify the challenge and opportunities on conservation snow leopard and its co-existence with wild ungulates and the human using the areas of the SNP. Methodology of my research included vantage points and regular monitoring from trails for Himalayan tahr, fixed line transect with belt drive method for musk deer and game birds, and microscopic hair identification in snow leopard's scat to investigate diet of snow leopard and to estimate prey selection. Based on available evidence and witness accounts of snow leopard attack on livestock, the patterns of livestock depredation were assessed. I obtained 201 sighting of Himalayan tahr (1760 individuals) and estimated 293 populations in post-parturient period (April-June), 394 in birth period (July -October) and 195 November- December) in rutting period. In average, ratio of male to females was ranged from 0.34 to 0.79 and ratio of kid to female was 0.21-0.35, and yearling to kid was 0.21- 0.47. The encounter rate for musk deer was 1.06 and density was 17.28/km2. For Himalayan monal, the encounter rate was 2.14 and density was 35.66/km2. I obtained 12 sighting of snow cock comprising 69 individual in Gokyo. The ratio of male to female was 1.18 and young to female was 2.18. Twelve species (8 species of wild and 4 species of domestic livestock) were identified in the 120 snow leopard scats examined. In average, snow leopard predated most frequently on Himalayan tahr and it was detected in 26.5% relative frequency of occurrence while occurred in 36.66% of all scats, then it was followed by musk deer (19.87%), yak (12.65%), cow (12.04%), dog (10.24%), unidentified mammal (3.61%), woolly hare (3.01%), rat sp. (2.4%), unidentified bird sp. (1.8%), pika (1.2%), and shrew (0.6%) (Table 5.8 ). Wild species were present in 58.99% of scats whereas domestic livestock with dog were present in 40.95% of scats. Snow leopard predated most frequently on wildlife species in three seasons; spring (61.62%), autumn (61.11%) and winter (65.51%), and most frequently on domestic species including dog in summer season (54.54%). In term of relative biomass consumed, in average, Himalayan tahr was the most important prey species contributed 26.27% of the biomass consumed. This was followed by yak (22.13%), cow (21.06%), musk deer (11.32%), horse (10.53%), wooly hare (1.09%), rat (0.29%), pika (0.14%) and shrew (0.07%). In average, domestic livestock including dog were contributed more biomass in the diet of snow leopard comprising 60.8% of the biomass consumed whilst the wild life species comprising 39.19%. The annual prey consumption by a snow leopard (based on 2 kg/day) was estimated to be three Himalayan tahr, seven musk deer, five wooly hare, four rat sp., two pika, one shrew and four livestock. In the present study, the highest frequency of attack was found during April to June and lowest to July to November. The day of rainy and cloudy was the more vulnerable to livestock depredation. Snow leopard attacks occurred were the highest at near escape cover such as shrub land and cliff. Both predation pressure on tahr and that on livestock suggest that the development of effective conservation strategies for two threatened species (predator and prey) depends on resolving conflicts between people and predators. Recently, direct control of free – ranging livestock, good husbandry and compensation to shepherds may reduce snow leopard – human conflict. In long term solution, the reintroduction of blue sheep at the higher altitudes could also “buffer” predation on livestock.
|
|
|
Subbotin, A. E., & Istomov, S. V. (2009). The population status of snow leopards Uncia uncia (Felidae, Carnivora) in the western Sayan Mountain Ridge. Doklady Biologicl Sciences, 425, 183–186.
Abstract: The snow leopard (Uncia uncial Schreber, 1776) is the most poorly studied species of the cat family in the world and, in particular, in Russia, where the northern periphery of the species area (no more than 3% of it) is located in the Altai-Hangai-Sayan range [1]. It is generally known that the existing data on the Russian part of the snow leopard population have never been a result of targeted studies; at best, they have been based on recording the traces of the snow leopard vital activity [2]. This is explained by the snow leopard's elusive behavior, inaccessibility of its habitats for humans, and its naturally small total numbers in the entire species area. All published data on the population status of the snow leopard in Russia, from the first descriptions of the species [3-6] to the latest studies [7, 8] are subjective, often speculative, and are not confirmed by
quantitative estimates. It is obvious, however, that every accurate observation of this animal is of particular interest [9]. The purpose of our study was to determine the structure and size of the population group presumably inhabiting the Western Sayan mountain ridge at the northern boundary of the species area
|
|
|
Suryawanshi, K. R., Bhatnagar, Y., & Mishra, C. (2009). Why should a grazer browse? Livestock impact on winter resource use by bharal Pseudois nayaur
. Oecologia, , 1–10.
Abstract: Many mammalian herbivores show a temporal diet variation between graminoid-dominated and browse dominated diets. We determined the causes of such a diet shift and its implications for conservation of a medium sized ungulate-the bharal Pseudois nayaur. Past studies show that the bharal diet is dominated by graminoids (>80%) during summer, but the contribution of graminoids declines to about 50% in winter. We tested the predictions generated by two alternative hypotheses explaining the decline: low graminoid availability during winter causes bharal to include browse in their diet; bharal include browse, with relatively higher nutritional quality, in their diet to compensate for the poor quality of graminoids during winter. We measured winter graminoid availability in areas with no livestock grazing, areas with relatively moderate livestock grazing, and those with intense livestock grazing pressures. The chemical composition of plants contributing to the bharal diet was analysed. The bharal diet was quantiWed through signs of feeding on vegetation at feeding locations. Population structures of bharal populations were recorded using a total count method. Graminoid availability was highest in areas without livestock grazing, followed by areas with moderate and intense livestock grazing. The bharal diet was dominated by graminoids (73%) in areas with highest graminoid availability. Graminoid contribution to the bharal diet declined monotonically (50, 36%) with a decline in graminoid availability. Bharal young to female ratio was 3 times higher in areas with high graminoid availability than areas with low graminoid availability. The composition of the bharal winter diet was governed predominantly by the availability of graminoids in the rangelands. Our results suggest that bharal include more browse in their diet during winter due to competition from livestock for graminoids. Since livestock grazing reduces graminoid availability, creation of livestock-free areas is necessary for the conservation of grazing species such as the bharal and its predators including the endangered snow leopard in the Trans-Himalaya.
|
|