|
Aizin B.M. (1969). Siberian ibex Capra sibirica Pall.
Abstract: It describes status of ibex in Kyrgyzstan, its distribution, behavioral patterns, enemies and competitors, etc. The enemies of ibex are snow leopard and wolf. All year round snow leopard preys on ibex its main food object and, therefore, should there be ibexes, snow leopards would be somewhere around. In winter, a considerable number of ibex dies from wolves. Sometimes dogs prey on ibex, too. Golden eagles and bearded vultures prey on young ibexes. However, poachers remain the most dangerous enemy.
|
|
|
Anonymous. (1994). Resolutions Conservation of Snow Leopard, Seventh International Snow Leopard Symposium. In J.L.Fox, & D.Jizeng (Eds.), (pp. 329–331). Usa: Islt.
|
|
|
Anonymous. (2000). Save the Snow Leopard. (Road and Gas Pipeline Project Threatens Ecology of Siberia). The Ecologist, 30(4), 14.
Abstract: An interregional organisation called Siberian Accord plans to construct a road and gas pipeline to China, This association, which has vast political powers, exists to create favorable conditions for investing in Siberia.
|
|
|
Bocci, A., Lovari, S., Khan, M. Z., Mori, E. (2017). Sympatric snow leopards and Tibetan wolves: coexistence of large carnivores with human-driven potential competition. European Journal of Wildlife Research, , 1–9.
Abstract: The snow leopard Panthera uncia coexists with the wolf Canis lupus throughout most of its distribution range.
We analysed the food habits of snow leopards and wolves in their sympatric range in the Karakoram mountains of Pakistan. A total of 131 genotyped scats (N = 74, snow leopard; N = 57, Tibetan wolf) were collected during the cold periods (i.e. winter and spring) of 2011 and 2012 in the Hushey valley. Large mammals, i.e. livestock and ibex, accounted for 84.8 and 83.1% of the diet (relative frequency) of the snow leopard and the wolf, respectively. Domestic prey was the staple of the diet of both snow leopards (66.6%) and wolves (75.1%). Ibex Capra ibex, the only wild ungulate in our study area, contributed 18.2 and 16.9%of relative frequencies in the
diets of the snow leopard and the wolf, respectively. In winter, the snowleopard heavily relied on domestic sheep (43.3%) for food, whereas the wolf preyed mainly on domestic goats (43.4%). Differently from other study areas, both snow leopards and wolves showed no apparent prey preference (Jacobs
index: snow leopard min. − 0.098, max. 0.102; Tibetan wolf min. − 0.120, max. 0.03). In human depauperate areas, with livestock and only a few wild prey, should competitive interactions arise, two main scenarios could be expected, with either predator as a winner. In both cases, the best solution
could primarily impinge on habitat restoration, so that a balance could be found between these predators, who have already coexisted for thousands of years.
|
|
|
Cunha, S. F. (1994). Summits, snow leopards, farmers, and fighters: Will politics prevent a national park in the high Pamirs of Tajikistan? Focus; New York, 44(1), 17–22.
Abstract: Tajikistan is the smallest, poorest and one of the most culturally diverse of the former Soviet Republics. The physical and cultural geography of the Pamir Mountains in Tajikistan are described, and recent legislative action taken to create a proposed park and civil strife that may stop the park's creation are discussed.
|
|
|
Darehshuri, B. F. (1978). Threatened cats of Asia. Wildlife, 20(9), 396–400.
Abstract: Man's hand is turned against the wild cats wherever they occur, often due to the value of their fur, but also because of the danger they sometimes pose to domestic stock and even human beings. All the larger Asian cats are threatened, and on this and the following pages we look at three of them – the Asiatic cheetah, the Siberian tiger, and the snow leopard.
|
|
|
Esipov A.V. (2000). Current state of snow leopard and its main preys in Hissar nature reserve.
Abstract: An expert evaluation of the numbers of snow leopard and its preys, Siberian ibex and long-tailed marmot, was made on the basis of surveys conducted in Hissar nature reserve in 1999. The total number of the snow leopard is estimated at 12-16 individuals, whereas that of the Siberian ibex at 1000 individuals. An average density of the population of the long tailed marmot ranges at 4,8 individuals per ha. The ratio of the numbers between the snow leopard, Siberian ibex and long tailed marmot is 1:68:450. The major threats for the snow leopard are poaching on the borders of the nature reserve, a decrease in of preys, shrinking of the range in areas adjoining the nature reserve as a result of intensification of industrial activities and disturbing factors. For the Siberian ibex and long tailed marmot the major limiting factors are the shrinking of the areas and deterioration of the forage value of the high-mountain pastures, as well as the direct competition for forage with domestic animals at the sites adjoining the territory of the nature, as well as disturbing factors.
|
|
|
Johnson, D. (1994). The National Fish and Wildlife Foundation goes international. Endangered Species Update, A, 11(10), A10.
Abstract: Abstract: The National Fish and Wildlife Foundation (NFWF) which is a conservation organization created in 1984 aims to conserve the species on an international context before they are endangered which will enable a more effective conservation procedure. The NFWF has addressed the causes of endangered species in India and South Asia such as the tiger, Indian wolf and the snow leopard and has supported the conservation efforts of the Siberian tiger. It has cooperated with multi-national organizations to evaluate the best strategy that could be adopted to prevent a future extinction of several species and has supported CITES programs
|
|
|
Knight, D. (2000). Pipeline could ruin Siberian Plateau.
Abstract: A proposed natural gas pipeline and accompanying road from southern Siberia to China would destroy the ecology of a plateau that is internationally recognized for its abundance of rare and endangered species, warn environmentalists meeting here this week. Known as the Ukok Plateau, this area near the intersection of Mongolia, China, Russia and Kazakhstan provides a critical habitat for one of the least studied predators in the world, the snow leopard, and many other endangered species including the argali mountain sheep, the black stork and the steppe eagle.
|
|
|
Kosharev, E. P. (1996). The Northern Limit of Snow Leopard Range (Vol. xiv). Seattle: Islt.
|
|
|
Koshkarev E.P. (1990). Key areas of snow leopard's habitat as main conservation objects (Vol. Part. 1.).
Abstract: The most vulnerable key areas within the snow leopard habitat are East Kazakhstan (an area of 48,000 square km) with no protected areas network established, and South Siberia (131,000 square km), where snow leopard is protected in three nature reserves. These areas are distant from main part of the habitat, isolated and have more extreme conditions. In Central Asia's key area (213,000 square km) linked to a main Chinese-Afghani part of the habitat, snow leopard was found in 11 nature reserves and two national parks. For reliable protection of this species it would be expedient to strengthen the role of the mountain nature reserves by means of extension and amalgamation of the areas, and other measures.
|
|
|
Koshkarev, E. (1994). Evaluation of the presence of snow leopard and ibex in Southern Siberia. In J.Fox, & D.Jizeng (Eds.), (pp. 17–27). Seattle/USA: Islt.
|
|
|
Koshkarev, E. (1997). Has the Snow Leopard Disappeared from Eastern Sayan and Western Hovsogol? In R.Jackson, & A.Ahmad (Eds.), (pp. 96–107). Lahore, Pakistan: Islt.
|
|
|
Koshkarev, E. (1998). Snow leopard along the border of Russia and Mongolia. Cat News, 28, 12–14.
Abstract: The author discusses the distribution of snow leopards along the border of Russia and Mongolia. The range extension of the leopard indicates their ability to cross desert areas that separate mountain habitats.habitat; range extension; scat analysis; techniques; tracks/tracking | snow leopard
|
|
|
Medvedev, D. G. (1990). The Snow Leopard in the Eastern Sayan Mountains. International Pedigree Book of Snow Leopards, 6, 17–19.
|
|
|
Razmakhnin V.E. (1977). Siberian wild ibex.
Abstract: It provides a detailed description of biology, distribution, geographic variability, behavior, and locomotion features of ibex in the USSR. Its population was defined as 100,000 animals, main enemies being wolf, snow leopard, and golden eagle. Wolf mainly preys on ibex at the end of winter; old males, weakened during the heat mostly becoming a prey. Snow leopards prey on ibexes all year round. Golden eagles mostly prey on young ibexes.
|
|
|
Rovero, F., Augugliaro, C., Havmoller, R. W., Groff, C., Zimmerman, F., Oberosler, V., Tenan, S. (2018). Co-occurrence of snow leopard Panthera uncia, Siberian ibex Capra sibirica and livestock: potential relationships and effects. Oryx, , 1–7.
Abstract: Understanding the impact of livestock on native
wildlife is of increasing conservation relevance. For the
Vulnerable snow leopard Panthera uncia, wild prey reduction,
intensifying human�wildlife conflicts and retaliatory
killings are severe threats potentially exacerbated by the
presence of livestock. Elucidating patterns of co-occurrence
of snow leopards, wild ungulate prey, and livestock, can be
used to assess the compatibility of pastoralism with conservation.
We used camera trapping to study the interactions of
livestock, Siberian ibex Capra sibirica and snow leopards in
a national park in the Altai mountains, Mongolia. We obtained
 detections of wild mammals and  of domestic
ungulates, dogs and humans. Snow leopards and Siberian
ibex were recorded  and  times, respectively. Co-occurrence
modelling showed that livestock had a higher estimated
occupancy (.) than ibex, whose occupancy was
lower in the presence of livestock (.) than in its absence
(.�. depending on scenarios modelled). Snow leopard
occupancy did not appear to be affected by the presence of
livestock or ibex but the robustness of such inference was
limited by uncertainty around the estimates. Although our
sampling at presumed snow leopard passing sites may have
led to fewer ibex detections, results indicate that livestock
may displace wild ungulates, but may not directly affect
the occurrence of snow leopards. Snow leopards could still
be threatened by livestock, as overstocking can trigger
human�carnivore conflicts and hamper the conservation
of large carnivores. Further research is needed to assess
the generality and strength of our results.
|
|
|
Saparbayev, S.K., & Woodward, D. B. (2008). Snow Leopard (Uncia uncia) as an Indicator Species and Increasing Recreation Loads in the Almaty Nature Reserve.
Abstract: The purpose of this research is to analyze the data on ecology, biology and dynamics of snow leopard population in the Almaty Nature Reserve and to identify if the increasing numbers of ecotourists could contribute to the decrease of Uncia uncia population. The results of the study show that increasing recreation loads in the Reserve and adjacent territories elevate the disturbance level to the snow leopard's main prey Siberian Ibex and to the predator itself that could result in a decrease of population of this endangered species or its total extinction.
|
|
|
Sitnikov, P. (1988). The Death of a Snow Leopard. In L.Blomqvist (Ed.), (pp. 7–8). Helsinki, Finland.
|
|
|
Smirnov, M. N., Sokolov, G. A., & Zyryanov, A. N. (1990). The Snow Leopard (Uncia Uncia Scherber 1776) in Siberia. Int.Nat.Ped.Book of Snow Leopards, 6, 9–15.
|
|
|
Sokolov G.A. (2003). Predatory mammals of Central Siberia, status of populations, influence of anthropogenic factors.
Abstract: The species resources of Siberia's fauna decrease from south to north. The highest diversity of species is observed in the mountain systems, the lowest in sub-zones of south and central taiga and steppe zone, where the cat family species are absent. During the last 50 150 years number of species has decreased two- to tenfold. Imperfect hunting management, farming, and mining operations resulted in transformation of the animal habitats. Population of fox, polecat, and sable has reduced; snow leopard and dhole becoming endangered species. If current tendencies continue to develop some species will disappear in the region in decades to come.
|
|
|
Volozheninov N.N. (1986). Ecology of some mammals in western part of the Hissar ridge.
Abstract: Additional data on Lepus tolai, Ochotona rutila, Citellus relictus, Marmota caudata, Sus scrofa, Capra sibirica in western part of the Hissar ridge, Uzbekistan, is given here based on materials of the years 1978-1983. Information about distribution of these species, their numbers, food, enemies, and other ecologic issues is provided. Capra sibirica is a principle species snow leopard preys on. In 1899 1983, the authors recorded more than 20 cases of snow leopards' killing ibex of different ages.
|
|
|
Vorobjov G.G.& Ostastshenko A.N. (2002). The winter distribution of the ibex (Capra sibirica) and wild boar (Sus scrofa) in the Chatkal River Basin.
Abstract: There are 3 independent groups of the ibex in the Chatkal River basin and 2 ones of the wild boar. Therefore the populations of these animals are vulnerable in wintertime. The wild sheep (Ivis …••Œ‹) wide distributed in Chatkal valley earlier has not been found out. Pskem population of ibex is assessed as 30 individuals, Chandalash population as 450 ibexes and Chatkal population is assessed less than 200 individuals. Number of wild boar in Pskem ridge is 200 individuals; total number of Chandalash population is 20-25 boars.
|
|