|
Ale S. (2005). Have snow leopards made a comeback to the Everest region of Nepal?.
Abstract: In the 1960s, the endangered snow leopard was locally extirpated from the Sagarmatha (Mt. Everest) region of Nepal. In this Sherpa-inhabited high Himalaya, the flourishing tourism since the ascent of Mt Everest in 1953, has caused both prosperity and adverse impacts, the concern that catalyzed the establishment of Mt. Everest National Park in the region in 1976. In the late 1980s, there were reports that some transient snow leopards may have visited the area from adjoining Tibet, but no biological surveys exist to confirm the status of the cats and their prey. Have snow leopards finally returned to the top of the world? Exploring this question was the main purpose of this research project. We systematically walked altogether 24 sign transects covering over 13 km in length in three valleys, i.e. Namche, Phortse and Gokyo, of the park, and counted several snow leopard signs. The results indicated that snow leopards have made a comeback in the park in response to decades of protective measures, the virtual cessation of hunting and the recovery of the Himalayan tahr which is snow leopard's prey. The average sign density (4.2 signs/km and 2.5 sign sites/km) was comparable to that reported from other parts of the cats' range in the Himalaya. On this basis, we estimated the cat density in the Everest region between 1 to 3 cats per 100 sq km, a figure that was supported by different sets of pugmarks and actual sightings of snow leopards in the 60 km2 sample survey area. In the study area, tahr population had a low reproductive rate (e.g. kids-to-females ratio, 0.1, in Namche). Since predators can influence the size and the structure of prey species populations through mortality and through non-lethal effects or predation risk, snow leopards could have been the cause of the population dynamics of tahr in Sagarmtha, but this study could not confirm this speculation for which further probing may be required.
|
|
|
Bagchi, S., Sharma, R. K., Bhatnagar, Y.V. (2020). Change in snow leopard predation on livestock after revival of wild prey in the Trans-Himalaya. Wildlife Biology, , 1–11.
Abstract: Human–wildlife conflict arising from livestock-losses to large carnivores is an important challenge faced by conservation. Theory of prey–predator interactions suggests that revival of wild prey populations can reduce predator’s dependence on livestock in multiple-use landscapes. We explore whether 10-years of conservation efforts to revive wild prey could reduce snow leopard’s Panthera uncia consumption of livestock in the coupled human-and-natural Trans-Himalayan ecosystem of northern India. Starting in 2001, concerted conservation efforts at one site (intervention) attempted recovery of wild- prey populations by creating livestock-free reserves, accompanied with other incentives (e.g. insurance, vigilant herding). Another site, 50km away, was monitored as status quo without any interventions. Prey remains in snow leopard scats were examined periodically at five-year intervals between 2002 and 2012 to determine any temporal shift in diet at both sites to evaluate the effectiveness of conservation interventions. Consumption of livestock increased at the status quo site, while it decreased at the intervention-site. At the intervention-site, livestock-consumption reduced during 2002–2007 (by 17%, p = 0.06); this effect was sustained during the next five-year interval, and it was accompanied by a persistent increase in wild prey populations. Here we also noted increased predator populations, likely due to immigration into the study area. Despite the increase in the predator population, there was no increase in livestock-consumption. In contrast, under status quo, dependence on livestock increased during both five-year intervals (by 7%, p=0.08, and by 16%, p=0.01, respectively). These contrasts between the trajectories of the two sites suggest that livestock-loss can potentially be reduced through the revival of wild prey. Further, accommodating counter-factual scenarios may be an important step to infer whether conservation efforts achieve their targets, or not.
|
|
|
Bogdanov O.P. (1992). Snow leopard or irbis Uncia Uncia.
Abstract: Snow leopard and its habitat within the USSR and Uzbek SSR are described. Its habitat in the Chatkal and Hissar ridges are described too. Given are data concerning alimentary biology, reproduction, and attitude to man. Female snow leopards become mature at the age of two three years, male at the age of four years. Reproduction occurs once every two years. Presumably, there are 10 animals in the country. Snow leopard is protected in four nature reserves in Uzbekistan and a number of nature reserves in neighbour countries.
|
|
|
Chundawat, R. S. (1990). Habitat Selection by a Snow Leopard in Hemis National Park, India. In L.Blomqvist (Ed.), (pp. 85–92). Helsinki, Findland: Leif Blomqvist and Helesinki Zoo.
|
|
|
Chundawat, R. S., Rodgers W.A., & Panwar, H. S. (1988). Status Report on Snow Leopard in India. In H.Freeman (Ed.), (pp. 113–120). Srinagar, India: International Snow Leopard Trust and Wildlife Institute of India.
Abstract: Gives status and distribution of snow leopards in India primarely based on sightings and kills.
|
|
|
Dementiev G.P. (1967). Quadrupeds inhabitants of the mountains.
Abstract: All species inhabiting the highlands of Asia are normally referred to as herbivorous or predators. A majority of alpine land species (rodents and ungulates) feeds upon leaves, stalks, and roots of plants. Among widely distributed highland species the most interesting are marmots, red pica, grey vole, argali, and ibex. Argali and ibex are preyed on by snow leopards. There are reasons to believe that these mountain animal species are more ancient than their cognates in a plain. All the way from Central Asia to Europe, species belonging to the eastern and western fauna complexes are observed to interpenetrate.
|
|
|
Dhungel, S. (1994). Conservation of the Snow Leopard in Nepal. In J. L. Fox, & D. Jezing (Eds.), (pp. 47–50). Usa: Islt.
|
|
|
Farrington, J. (2005). A Report on Protected Areas, Biodiversity, and Conservation in the Kyrgyzstan Tian Shan with Brief Notes on the Kyrgyzstan Pamir-Alai and the Tian Shan Mountains of Kazakhstan, Uzbekistan, and China. Ph.D. thesis, , Kyrgyzstan.
Abstract: Kyrgyzstan is a land of towering mountains, glaciers, rushing streams, wildflowercovered meadows, forests, snow leopards, soaring eagles, and yurt-dwelling nomads. The entire nation lies astride the Tian Shan1, Chinese for “Heavenly Mountains”, one of the world's highest mountain ranges, which is 7439 m (24,400 ft) in elevation at its highest point. The nation is the second smallest of the former Soviet Central Asian republics. In
spite of Kyrgyzstan's diverse wildlife and stunning natural beauty, the nation remains little known, and, as yet, still on the frontier of international conservation efforts. The following report is the product of 12 months of research into the state of conservation and land-use in Kyrgyzstan. This effort was funded by the Fulbright Commission of the U.S. State Department, and represents the most recent findings of the author's personal environmental journey through Inner Asia, which began in 1999. When I first started my preliminary research for this project, I was extremely surprised to learn that, even though the Tian Shan Range has tremendous ecological significance for conservation efforts in middle Asia, there wasn't a single major international conservation organization with an office in the former Soviet Central Asian republics. Even more surprising was how little awareness there is of conservation issues in the Tian Shan region amongst conservation workers in neighboring areas who are attempting to preserve similar species assemblages and ecosystems to those found in the Tian Shan. Given this lack of awareness, and the great potential for the international community to make a positive contribution towards improving the current state of biodiversity conservation in Kyrgyzstan and Central Asia, I have summarized my findings on protected areas and conservation in Kyrgyzstan and the Tian Shan of Kazakhstan, Uzbekistan, and Xinjiang in the chapters below. The report begins with some brief background information on geography and society in the Kyrgyz Republic, followed by an overview of biodiversity and the state of conservation in the nation, which at the present time closely parallels the state of conservation in the other former Soviet Central Asian republics. Part IV of the report provides a catalog of all major protected areas in Kyrgyzstan and the other Tian Shan nations, followed by a list of sites in Kyrgyzstan that are as yet unprotected but merit protection. In the appendices the reader will find fairly comprehensive species lists of flora and fauna found in the Kyrgyz Republic, including lists of mammals, birds, fish, reptiles, amphibians, trees and shrubs, wildflowers, and endemic plants. In addition, a
draft paper on the history and current practice of pastoral nomadism in Kyrgyzstan has been included in Appendix A. While the research emphasis for this study was on eastern Kyrgyzstan, over the course of the study the author did have the opportunity to make brief journeys to southern Kyrgyzstan, Uzbekistan, Kazakhstan, and Xinjiang. While falling short of being a definitive survey of protected areas of the Tian Shan, the informational review which
follows is the first attempt at bringing the details of conservation efforts throughout the entire Tian Shan Range together in one place. It is hoped that this summary of biodiversity and conservation in the Tian Shan will generate interest in the region amongst conservationists, and help increase efforts to protect this surprisingly unknown range that forms an island of meadows, rivers, lakes, and forests in the arid heart of Asia.
|
|
|
Fox, J. L. (1994). Snow leopard conservation in the wild – a comprehensive perspective on a low density and highly fragmented population. In J.Fox, & J.Du (Eds.), (pp. 3–15). Usa: Islt.
|
|
|
Grachev Yu.A. (1978). Snow leopard, or irbis Uncia uncia (Vol. Part 1. Vertebrate animals.).
Abstract: Snow leopard is rare and endangered species. At present it is met in Tien Shan and the spurs: in the ridges of Pskem, Ugam, Karjantau, Talas, Kyrgyz, Zailiyskiy, Ketmene, Kungei Alatau, Terskey Alatau, as well as Jungar Alatau, Tarbagatai, Saure, and Altai. In 19th century, snow leopard used to be met in the Karatau ridge (the Syrdarya ridge). Over the last two decades population of snow leopard reduced due to increased development of mountainous areas and reduction of wild animal populations (ibex, argali, morals, marmots, etc.). In Kazakhstan, snow leopard is protected in the Aksu-Djabagly and Alma-Ata nature reserves.
|
|
|
Hunter, D. (1996). Mongolian-American Snow Leopard Project (Vol. xiv). Seattle: International Snow Leopard Trust.
|
|
|
Hunter, D. O. (1991). Science and Spirit:GIS tracks the elusive snow leopard. GeoInfo Systems, Jan, 21–28.
|
|
|
International Snow Leopard Trust. (2000). Snow Leopard News Autumn/ Winter 2000. Seattle, Wa: Islt.
|
|
|
Ishunin G.I. (1989). The Felids family Felidae Gray, 1821.
Abstract: Zoolites of the Felidae family are known from the Upper Eocene Lower Pliocene in Eurasia, Africa, and North America. Two sub-families are know to inhabit the territory of the USSR and adjacent territories: the extinct sabre-toothed Felidae species Machairodontia and now existing Felidae species. In the USSR the extinct Felidae species were found to exist in Upper Miocene, Upper and Middle Pliocene, and Pleistocene. In Eurasia panthers has been know since early Pliocene. Three species were found in Uzbekistan – the extinct cave lion Felidae sd†l…†… (Goldfuss, 1810), and now existing P…nth†a… tigris, P…nth†a… pardus. The ancient finds and modern habitats are briefly described. Genus Uncia is represented by one species snow leopard or irbis. Probably it appeared in later Pliocene or Pleistocene in the mountain of Central Asia. In Uzbekistan, remains of snow leopard were found in the Samarqand region in the layer of Upper Pleistocene or Holocene. Probably it moved into the area in Pleistocene or the period of glacier removal in the Western Tien Shan mountains, Turkestan, Zeravshan, and Hissar ridges.
|
|
|
Jack, Jill, Jackson, P., Wharton, D., & Jackson, R. Snow leopard, Ucia uncia.
|
|
|
Jack, R. (2008). DNA Testing and GPS positioning of snow leopard (Panthera uncia) genetic material in the Khunjerab National Park Northern Areas, Pakistan.
Abstract: The protection of Snow Leopards in the remote and economically disadvantaged Northern Areas of Pakistan needs local people equipped with the skills to gather and present information on the number and range of individual animals in their area. It is important for the success of a conservation campaign that the people living in the area are engaged in the conservation process. Snow Leopards are elusive and range through inhospitable terrain so direct study is difficult. Consequently the major goals for this project were twofold, to gather information on snow leopard distribution in this area and to train local university students and conservation management professionals in the techniques used for locating snow leopards without the need to capture or even see the animals. This project pioneered the use of DNA testing of field samples collected in Pakistan to determine the distribution of snow leopards and to attempt to identify individuals. These were collected in and around that country's most northerly national park, the Kunjurab National Park, which sits on the Pakistan China border. Though the Northern Areas is not a well developed part of Pakistan, it does possess a number of institutions that can work together to strengthen snow leopard conservation. The first of these is a newly established University with students ready to be trained in the skills needed. Secondly WWF-Pakistan has an office in the main town and a state of the art GIS laboratory in Lahore and already works closely with the Forest Department who manage the national park. All three institutions worked together in this project with WWF providing GIS expertise, the FD rangers, and the university students carrying out the laboratory work. In addition in the course of the project the University of the Punjab in Lahore also joined the effort, providing laboratory facilities for the students. As a result of this project maps have been produced showing the location of snow leopards in
two areas. Preliminary DNA evidence indicates that there is more than one animal in this
relatively small area, but the greatest achievement of this project is the training and
experience gained by the local students. For one student this has been life changing. Due to
the opportunities provided by this study the student, Nelofar gained significant scientific
training and as a consequence she is now working as a lecturer and research officer for the
Center for Integrated Mountain Research, New Campus University of the Punjab, Lahore
Pakistan
|
|
|
Jackson, R. (1987). Snow Cats of Nepal's Langue Gorge. Animal Kingdom, 4, 44–53.
Abstract: Anecdotal account with some general research results of a four year tracking study of the snow leopard in Nepal's Langu valley
|
|
|
Jackson, R. (1992). SSC Plan for Snow Leopard.
|
|
|
Jackson, R. (2002). Snow Leopard Status, Distribution, and Protected Areas Coverage.. Islt: Islt.
Abstract: This document reports on the status, distribution and protected areas coverage for snow leopard across its range in Central Asia. It is intended to aid in updating the existing knowledge base of snow leopard status and distribution during the Snow Leopard Survival Strategy (SLSS) Workshop organized by the International Snow Leopard Trust (ISLT), and to be held in Seattle on May 21-25, 2002. The SLSS workshop provides an unique opportunity to solicit feedback from scientists,
conservation organizations, government agencies and knowledgeable experts in order to:
(1) Verify the accuracy of information presented in this document (much of which was published 5-10 years ago) and to identify data gaps, especially with respect to population size and protectedareas coverage for this species;
(2) Aid organizations in developing tightly targeting conservation actions by identifying critical snow leopard areas, parks and reserves, and by implication, the intervening linking corridors linking key protected areas;
(3) Serve as a catalyst for encouraging range-countries to conduct field surveys into snow leopard status and distribution, especially in those areas deemed the most important to the maintenance of a viable metapopulation across the 12 countries in which the species' occurs.
|
|
|
Jackson, R., & Ahlborn, G. (1987). Observation on Movements and Home Range of the Snow Leopard, (Panthera Uncia) In the Langu Gorge, West Nepal (Vol. No. 13). Seattle: Islt.
|
|
|
Jackson, R., & Ahlborn, G. (1989). Snow leopards (Panthera- uncia) in Nepal – home range and movements. National Geographic Research, 5(2), 161–175.
|
|
|
Jackson, R., & Ahlborn, G. (1989). Snow Leopards in Nepal-home range and movements. National Geographic Res., 5, 161–175.
|
|
|
Jackson, R., & Fox, J. L. (1997). Snow Leopard Conservation: Accomplishments and Research Priorities. In R.Jackson, & A.Ahmad (Eds.), (pp. 128–144). Pakistan: Islt.
|
|
|
Jackson, R., Roe, J., Wangchuk, R., & Hunter, D. (2005). Camera-Trapping of Snow Leopards. Cat News, 42(Spring), 19–21.
Abstract: Solitary felids like tigers and snow leopards are notoriously difficult to enumerate, and indirect techniques like pugmark surveys often produce ambiguous information that is difficult to interpret because many factors influence marking behavior and frequency (Ahlborn & Jackson 1988). Considering the snow leopard's rugged habitat, it is not surprising then that information on its current status and occupied range is very limited. We adapted the camera-trapping techniques pioneered by Ullas Karanth and his associates for counting Bengal tigers to the census taking of snow leopards in the Rumbak watershed of the India's Hemis High Altitude National Park (HNP), located in Ladakh near Leh (76ø 50' to 77ø 45' East; 33ø 15' to 34ø 20'North).
|
|
|
Jackson, R. M. (1996). Home Range, Movements and Habitat use of Snow Leopard (Uncia uncia) in Nepal. Ph.D. thesis, University of London, University of London.
Abstract: Home ranges for five radio-tagged snow leopards (Uncia uncia) inhabiting prime habitat in Nepal Himalaya varied in size from 11-37 km2. These solitary felids were crepuscular in activity, and although highly mobile, nearly 90% of all consecutive day movements involved a straight line distance of 2km or less. No seasonal difference in daily movement or home range boundry was detected. While home ranges overlapped substancially, use of common core spaces was temporally seperated, with tagged animals being located 1.9 km or more apart during the smae day. Spatial analysis indicated that 47-55% of use occured within only 6-15% of total home area. The snow leopards shared a common core use area, which was located at a major stream confuence in an area where topography, habitat and prey abundance appeared to be more favorable. A young female used her core area least, a female with two cubs to the greatest extent. the core area was marked significantly more with scrapes, Faeces and other sighn than non-core sites, suggesting that social marking plays an important role in spacing individuals. Snow leopards showed a strong preference for bedding in steep, rocky or broken terrain, on or close to a natural vegetation or landform edge. linear landform features, such as a cliff or major ridgeline, were preferred for travelling and day time resting. This behavior would tend to place a snow leopard close to its preferred prey, blue sheep (Psuedois nayaur), which uses the same habitat at night. Marking was concetrated along commonly travelled routes, particularly river bluffs, cliff ledges and well defined ridgelines bordering stream confluences--features that were most abundant within the core area. Such marking may facilitate mutual avoidance, help maintain the species' solitary social structure, and also enable a relatively high density of snow leopard, especially within high-quality habitat.
|
|