|
Ale S. (2005). Have snow leopards made a comeback to the Everest region of Nepal?.
Abstract: In the 1960s, the endangered snow leopard was locally extirpated from the Sagarmatha (Mt. Everest) region of Nepal. In this Sherpa-inhabited high Himalaya, the flourishing tourism since the ascent of Mt Everest in 1953, has caused both prosperity and adverse impacts, the concern that catalyzed the establishment of Mt. Everest National Park in the region in 1976. In the late 1980s, there were reports that some transient snow leopards may have visited the area from adjoining Tibet, but no biological surveys exist to confirm the status of the cats and their prey. Have snow leopards finally returned to the top of the world? Exploring this question was the main purpose of this research project. We systematically walked altogether 24 sign transects covering over 13 km in length in three valleys, i.e. Namche, Phortse and Gokyo, of the park, and counted several snow leopard signs. The results indicated that snow leopards have made a comeback in the park in response to decades of protective measures, the virtual cessation of hunting and the recovery of the Himalayan tahr which is snow leopard's prey. The average sign density (4.2 signs/km and 2.5 sign sites/km) was comparable to that reported from other parts of the cats' range in the Himalaya. On this basis, we estimated the cat density in the Everest region between 1 to 3 cats per 100 sq km, a figure that was supported by different sets of pugmarks and actual sightings of snow leopards in the 60 km2 sample survey area. In the study area, tahr population had a low reproductive rate (e.g. kids-to-females ratio, 0.1, in Namche). Since predators can influence the size and the structure of prey species populations through mortality and through non-lethal effects or predation risk, snow leopards could have been the cause of the population dynamics of tahr in Sagarmtha, but this study could not confirm this speculation for which further probing may be required.
|
|
|
Ale, S., & Brown, J. (2007). The contingencies of group size and vigilance (Vol. 9).
Abstract: Background: Predation risk declines non-linearly with one's own vigilance and the vigilance of others in the group (the 'many-eyes' effect). Furthermore, as group size increases, the individual's risk of predation may decline through dilution with more potential victims, but may increase if larger groups attract more predators. These are known, respectively, as the dilution effect and the attraction effect.
Assumptions: Feeding animals use vigilance to trade-off food and safety. Net feeding rate declines linearly with vigilance.
Question: How do the many-eyes, dilution, and attraction effects interact to influence the relationship between group size and vigilance behaviour?
Mathematical methods: We use game theory and the fitness-generating function to determine the ESS level of vigilance of an individual within a group.
Predictions: Vigilance decreases with group size as a consequence of the many-eyes and dilution effects but increases with group size as a consequence of the attraction effect, when they act independent of each other. Their synergetic effects on vigilance depend upon the relative strengths of each and their interactions. Regardless, the influence of other factors on vigilance – such as encounter rate with predators, predator lethality, marginal value of energy, and value of vigilance – decline with group size.
|
|
|
Ale, S., & Whelan, C. (2008). Reappraisal of the role of big, fierce predators.
Abstract: The suggestion in the early 20th century that top predators were a necessary component of ecosystems because they hold herbivore populations in check and promote biodiversity was at Wrst accepted and then largely rejected. With the advent of Evolutionary Ecology and a more full appreciation of direct and indirect effects of top predators, this role of top predators is again gaining acceptance. The previous views were predicated upon lethal effects of predators but largely overlooked their non-lethal effects. We suggest that
conceptual advances coupled with an increased use of experiments have convincingly demonstrated that prey experience costs that transcend the obvious cost of death. Prey species use adaptive behaviours to avoid predators, and these behaviours are not cost-free. With predation risk, prey species greatly restrict their use of available habitats and consumption of available food resources. Effects of top predators consequently cascade down to the trophic levels below them. Top predators, the biggies, are thus both the targets of and the means for conservation at the landscape scale.
|
|
|
Ale, S. B. (1994). Snow Leopard in Remote Districts of Nepal (Vol. xii). Seattle: Islt.
|
|
|
Alexander, J., Chen, P., Damerell, P., Youkui, W., Hughes, J., Shi, K., Riordan, P. (2015). Human wildlife conflict involving large carnivores in Qilianshan, China and the minimal paw-print of snow leopards. Biological Conservation, 187, 1–9.
Abstract: In this paper, we assess local perceptions towards snow leopards in North West China using a framework
depicting key conflict domains. We describe the perceived threats posed to humans by the snow leopard
and set them within beliefs and attitudes towards other species within the large carnivore assemblage in
this region. Surveys were conducted in seven villages within Qilianshan National Nature Reserve, Gansu
Province, China, to document reports of snow leopard (Panthera uncia), grey wolf (Canis lupus), Eurasian
lynx (Lynx lynx) and brown bear (Ursus arctos) depredation of livestock, and local attitudes towards each
species. Questionnaire-based interviews were held with 60 households and 49 livestock herders. Herding
of yak, sheep and goats was found to be a common livelihood activity among households in all villages.
Herders reported losing livestock to all four carnivore species. Herders reported that depredation was the
most common event affecting livestock, compared with natural disasters or disease, and represented a
total loss of 3.6% of the livestock population during the previous year. Most (53%) depredation losses were
attributed to lynx, while snow leopards were held responsible for only 7.8% of depredation losses. The
reported impact of snow leopards on herding activities was relatively small and the majority of both
householders and herders expressed positive attitudes towards them and supported measures for their
protection. Households and herders held negative attitudes towards lynx, wolves and bears, however,
most likely due to their perceived threat to livestock and humans. Understanding community perceptions
of threats posed by wildlife is vital for gaining community support for, and engagement in, conflict
mitigation.
|
|
|
Allen, P. (2001). Irbis Enterprises: A Project of the International Snow Leopard Trust (Vol. 6). Columbus Zoo and Aquarium.
|
|
|
Aromov B. (1995). The Biology of the Snow Leopard in the Hissar Nature Reserve.
Abstract: The work contains data on biology snow leopard in Hissar nature reserve, Uzbekistan. The number of snow leopards in this reserve has increased from two or four in 1981 to between 13 and 17 individuals in 1994. Since 1981, snow leopards have been sighted 72 times and their tracks or pugmarks 223 times. In the Hissar Nature Reserve snow leopards largely feed on ibex. Over a period of 14 years, 92 kills and remains of ibex aged from one to thirteen years of age have been examined. Other records of predation, by the number of events observed, include 33 cases of juvenile and mature horses, 25 long-tailed marmot (Marmota caudata). 18 Himalayan snowcock (Tetraogallus himalayemis), 17 domestic goat, 13 wild boar (Sus scrofa), five domestic sheep and three incidents involving cattle. Twenty-two attacks on domestic flocks were reported, and these occurred during both the daytime and at night. Snow leopards usually mate between the 20th of February and March 20th. The offspring are born in late April to May, and there are usually two per litter (23 encounters), although a single litter of three has also been recorded.
|
|
|
Augugliaro, C., Christe, P., Janchivlamdan, C., Baymanday, H.,
Zimmermann, F. (2020). Patterns of human interaction with snow leopard and co-predators
in the Mongolian western Altai: Current issues and perspectives. Global Ecology and Conservation, 24, 1–21.
Abstract: Large carnivores can cause considerable economic damage,
mainly due to livestock depredation. These conficts instigate negative
attitude towards their conservation, which could in the extreme case
lead to retaliatory killing. Here we focus on the snow leopard (Panthera
uncia), a species of conservation concern with particularly large
spatial requirements. We conducted the study in the Bayan Olgii
province, one of the poorest provinces of Mongolia, where the majority
of the human population are traditional herders. We conducted a survey
among herders (N 261) through a semi-structured questionnaire with the
aim to assess: the current and future herding practices and prevention
measures, herders’ perceptions and knowledge of the environmental
protection and hunting laws; the perceived livestock losses to snow
leopard, wolf (Canis lupus), and wolverine (Gulo gulo), as well as to
non-predatory factors; the key factors affecting livestock losses to
these three large carnivores; and, finally, the attitudes towards these
three large carnivores. Non-predatory causes of mortality were slightly
higher than depredation cases, representing 4.5% and 4.3% of livestock
holdings respectively. While no depredation of livestock was reported
from wolverines, snow leopard and wolf depredation made up 0.2% and 4.1%
of total livestock holdings, respectively. Herders’ attitudes towards
the three large carnivores were negatively affected by the magnitude of
the damages since they had a positive overall attitude towards both snow
leopard and wolverine, whereas the attitude towards wolf was negative.
We discuss conservation and management options to mitigate herder-snow
leopard impacts. To palliate the negative consequences of the increasing
trend in livestock numbers, herd size reduction should be encouraged by
adding economic value to the individual livestock and/or by promoting
alternative income and/or ecotourism. Furthermore, co-management between
government and stakeholders would help tackle this complex problem, with
herders playing a major role in the development of livestock management
strategies. Traditional practices, such as regularly shifting campsites
and using dogs and corrals at night, could reduce livestock losses
caused by snow leopards.
|
|
|
Byambasuren, C. J., O., Alexander, J. S., Lkhagvajav, P., Samelius, G., Sharma, K. (2024). Who’s the boss? Understanding the spatial relationship between snow leopard and Eurasian lynx in southern Mongolia. Wildlife Biology, (e01323), 1–10.
Abstract: Interspecific competition, a fundamental ecological process characterized by negative interactions between species, plays a vital role in shaping ecological communities. Despite the co-occurrence of the snow leopard Panthera uncia and the Eurasian lynx Lynx lynx across vast landscapes in Asia, their interactions remain poorly understood. In this study, we investigated how the presence of snow leopards affected site-use by
lynx and whether the presence of snow leopards resulted in behavioral adaptations by the lynx. Between 2017 and 2022, we conducted camera trap-based surveys across six sites in southern Mongolia and evaluated species co-occurrence by snow leopards and lynx using the occupancy framework. We assumed snow leopards to be the dominant species while using topographical and land cover variables as covariates. Our results show that the presence of snow leopards influenced site-use by lynx, leading to a shift in space use when snow leopards were present. Specifically, lynx used the entire range of ruggedness and did not select for shrubby areas in the absence of snow leopards, whereas they avoided rugged areas and had a strong preference for shrubby areas when snow leopards were present. Our findings emphasize the influence a larger predator can have on the space use of a smaller predator, and how the presence of snow leopards can alter the space-use of lynx. Understanding these interactions and behavioral adaptations can be useful for developing effective conservation strategies in the region.
|
|
|
Chen, P., Gao, Y., Lee, A. T. L., Cering, L., Shi, K., Clark, S. G. (2016). Human–carnivore coexistence in Qomolangma (Mt. Everest) Nature Reserve, China: Patterns and compensation. Biological Conservation, (197), 18–26.
Abstract: Livestock depredation by large carnivores is frequently reported in Qomolangma (Mt. Everest) National Nature Reserve, Tibet Autonomous Region of China. Seeking to minimize conflicts, we assessed depredation patterns and ways to upgrade the compensation program. We gathered 9193 conflict records over 2011–2013 to determine the extent and tempo-spatial patterns of the depredation.Weinterviewed 22 local officials and 94 residents to learn their views on depredations and to assess the adequacy of compensation. Data showed that wolves (Canis lupus), lynx (Lynx lynx), and snowleopards (Panthera uncia)were themajor livestock predators. Total livestock
loss accounted for 1.2% of the entire stockholding (n=846,707) in the region. Wolves and lynx tended to take sheep and goats,whereas snowleopards favored yaks and cattle in relation to their proportional abundance. Predation mostly occurred in March through July. Livestock depredation by all predators when combined was best explained by terrain ruggedness and density of small- and large-bodied livestock. Temporal and spatial predation patterns variedamong carnivores.Most respondents (74%) attributed depredation causes to an increase in carnivore abundance. Only 7% blamed lax livestock herding practice for predation losses. Five percent said that
predation was the result of livestock population increases, while 11% had no idea. The compensation scheme was found to be flawed in all aspects—predation verification, application procedure, compensation standard, operational resource allocation, making payment, and other problems. To enhance management for human–carnivore coexistence, we recommend a problem-oriented, integrated, adaptive approach that targets the complex social context of the conflict and addresses the interconnected functions of decision-making process.
|
|