|
Ale S. (2005). Have snow leopards made a comeback to the Everest region of Nepal?.
Abstract: In the 1960s, the endangered snow leopard was locally extirpated from the Sagarmatha (Mt. Everest) region of Nepal. In this Sherpa-inhabited high Himalaya, the flourishing tourism since the ascent of Mt Everest in 1953, has caused both prosperity and adverse impacts, the concern that catalyzed the establishment of Mt. Everest National Park in the region in 1976. In the late 1980s, there were reports that some transient snow leopards may have visited the area from adjoining Tibet, but no biological surveys exist to confirm the status of the cats and their prey. Have snow leopards finally returned to the top of the world? Exploring this question was the main purpose of this research project. We systematically walked altogether 24 sign transects covering over 13 km in length in three valleys, i.e. Namche, Phortse and Gokyo, of the park, and counted several snow leopard signs. The results indicated that snow leopards have made a comeback in the park in response to decades of protective measures, the virtual cessation of hunting and the recovery of the Himalayan tahr which is snow leopard's prey. The average sign density (4.2 signs/km and 2.5 sign sites/km) was comparable to that reported from other parts of the cats' range in the Himalaya. On this basis, we estimated the cat density in the Everest region between 1 to 3 cats per 100 sq km, a figure that was supported by different sets of pugmarks and actual sightings of snow leopards in the 60 km2 sample survey area. In the study area, tahr population had a low reproductive rate (e.g. kids-to-females ratio, 0.1, in Namche). Since predators can influence the size and the structure of prey species populations through mortality and through non-lethal effects or predation risk, snow leopards could have been the cause of the population dynamics of tahr in Sagarmtha, but this study could not confirm this speculation for which further probing may be required.
|
|
|
Allen, P., & Macray, D. (2002). Snow Leopard Enterprises Description and Summarized Business Plan.. Seattle: Islt.
Abstract: The habitat for both humans and snow leopards in Central Asia is marginal, the ecosystem fragile. The struggle for humans to survive has often, unfortunately, brought them into conflict with the region's dwindling snow leopard populations. Herders commonly see leopards as a threat to their way of life and well-being. Efforts to improve the living conditions of humans must consider potential impacts on the environment. Likewise, conservation initiatives cannot ignore humans as elements of the landscape with a right to live with dignity and pride. Based on these principles, the International Snow Leopard Trust has developed a new conservation model that addresses the needs of all concerned.
We call it Snow Leopard Enterprises..
|
|
|
Ferretti, F., Lovari, S., Minder, I., Pellizzi, B. (2014). Recovery of the snow leopard in Sagarmatha (Mt.Everest) National Park: effects on main prey. European Journal of Wildlife Research, (60), 559–562.
Abstract: Consequences of predation may be particularly
heavy on small populations of herbivores, especially if they
are threatened with extinction. Over the 2006–2010 period, we
documented the effects of the spontaneous return of the endangered
snow leopard on the population of the vulnerable
Himalayan tahr. The study area was an area of central
Himalaya where this cat disappeared c. 40 years before, because
of persecution by man. Snow leopards occurred mainly
in areas close to the core area of tahr distribution. Tahr was the
staple (56.3 %) of snow leopards. After the arrival of this cat,
tahr decreased by more than 2/3 from 2003 to 2010 (mainly
through predation on kids). Subsequently, the density of snow
leopards decreased by 60%from2007 to 2010. The main prey
of snow leopards in Asia (bharal, marmots) were absent in our
study area, forcing snow leopards to specialize on tahr. The
restoration of a complete prey spectrum should be favoured
through reintroductions, to conserve large carnivores and to
reduce exploitation of small populations of herbivores, especially
if threatened.
|
|
|
Freeman, H. (1980). The snow leopard, today and yesterday. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards, Vol. 2 (Vol. 2, pp. 37–43). Helsinki: Helsinki Zoo.
|
|
|
Henschel, P., & Ray, J. (2003). Leopards in African Rainforests: Survey and Monitoring Techniques (Wildlife Conservation Society, Ed.).
Abstract: Monitoring Techniques Forest leopards have never been systematically surveyed in African forests, in spite of their potentially vital ecological role as the sole large mammalian predators in these systems. Because leopards are rarely seen in this habitat, and are difficult to survey using the most common techniques for assessing relative abundances of forest mammals, baseline knowledge of leopard ecology and responses to human disturbance in African forests remain largely unknown. This technical handbook sums up the experience gained during a two-year study of leopards by Philipp Henschel in the Lop‚ Reserve in Gabon, Central Africa, in 2001/2002, supplemented by additional experience from carnivore studies conducted by Justina Ray in southwestern Central African Republic and eastern Congo (Zaire) . The main focus of this effort has been to develop a protocol that can be used by fieldworkers across west and central Africa to estimate leopard densities in various forest types. In developing this manual, Henschel tested several indirect methods to assess leopard numbers in both logged and unlogged forests, with the main effort devoted to testing remote photography survey methods developed for tigers by Karanth (e.g., Karanth 1995, Karanth & Nichols 1998; 2000; 2002), and modifying them for the specific conditions characterizing African forest environments. This handbook summarizes the results of the field testing, and provides recommendations for techniques to assess leopard presence/absence, relative abundance, and densities in African forest sites. We briefly review the suitability of various methods for different study objectives and go into particular detail on remote photography survey methodology, adapting previously developed methods and sampling considerations specifically to the African forest environment. Finally, we briefly discuss how camera trapping may be used as a tool to survey other forest mammals. Developing a survey protocol for African leopards is a necessary first step towards a regional assessment and priority setting exercise targeted at forest leopards, similar to those carried out on large carnivores in Asian and South American forests.
|
|
|
International Snow Leopard Trust. (2000). Snow Leopard News Spring 2000. Seattle, Wa: Islt.
|
|
|
International Snow Leopard Trust. (2001). Snow Leopard News Spring 2001. Seattle, WA: Islt.
|
|
|
Jackson, R., Roe, J., Wangchuk, R., & Hunter, D. (2005). Surveying Snow Leopard Populations with Emphasis on Camera Trapping: A Handbook. Sonoma, California: The Snow Leopard Conservancy.
Abstract: This handbook provides an introduction to snow leopard population survey techniques, followed by a detailed account of camera trapping methods.During the 2002 through 2004 winter field seasons, the Snow Leopard Conservancy experimented with infrared camera trapping techniques to define a methodology suitable for the high altitude environment.
In 2001 and 2002, much of our time was spent familiarizing ourselves with various infrared camera traps, their operation and setup, and comparing the effectiveness of different models and sensor types. We placed infrared camera traps along frequently used travel corridors at or near scent-sprayed rocks (rock scents) and scrape sites within 16 km2 sampling cells between January and March in 2003 and 2004. A total of 66 and 49 captures of snow leopards were tallied during 2003 and 2004, resulting in an overall capture success of 8.91 and 5.63 individuals per 100 trap-nights, respectively. Capture probabilities ranged from 0.33 to 0.46. Density estimates ranged from 8.49 ± 0.22 individuals per 100 km2 in 2003 to 4.45 ± 0.16 in 2004, with the disparity between years largely attributed to different trapping densities. Snow leopard abundance estimates were calculated using the computer program CAPTURE.
|
|
|
Jackson, R., Roe, J., Wangchuk, R., & Hunter, D. (2005). Surveying Snow Leopard Populations with Emphasis on Camera Trapping: A Handbook. Sonoma, California: The Snow Leopard Conservancy.
Abstract: This handbook provides an introduction to snow leopard population survey techniques, followed by a detailed account of camera trapping methods.During the 2002 through 2004 winter field seasons, the Snow Leopard Conservancy experimented with infrared camera trapping techniques to define a methodology suitable for the high altitude environment.
In 2001 and 2002, much of our time was spent familiarizing ourselves with various infrared camera traps, their operation and setup, and comparing the effectiveness of different models and sensor types. We placed infrared camera traps along frequently used travel corridors at or near scent-sprayed rocks (rock scents) and scrape sites within 16 km2 sampling cells between January and March in 2003 and 2004. A total of 66 and 49 captures of snow leopards were tallied during 2003 and 2004, resulting in an overall capture success of 8.91 and 5.63 individuals per 100 trap-nights, respectively. Capture probabilities ranged from 0.33 to 0.46. Density estimates ranged from 8.49 ± 0.22 individuals per 100 km2 in 2003 to 4.45 ± 0.16 in 2004, with the disparity between years largely attributed to different trapping densities. Snow leopard abundance estimates were calculated using the computer program CAPTURE.
|
|
|
Jiang, Z. (2005). Snow leopards in the Dulan International Hunting Ground, Qinghai, China.
Abstract: From March to May, 2006œªwe conducted extensive snow leopard surveys in the Burhanbuda Mountain Kunlun Mountains, Qinghai Province, China. 32 linear transect of 5~15 km each, which running through each vegetation type, were surveyed within the study area. A total of 72 traces of snow leopard were found along 4 transects (12.5% of total transects). The traces included pug marks or footprints, scrapes and urine marks. We estimated the average density of wild ungulates in the region was 2.88ñ0.35 individuals km-2(n=29). We emplaced 16 auto2 trigger cameras in different environments and eight photos of snow leopard were shot by four cameras and the capture rate of snow leopard was 71.4%. The minimum snow leopard population size in the Burhanbuda Mountain was two, because two snow leopards were phototrapped by different cameras at almost same time. Simultaneously, the cameras also shot 63 photos of other wild animals, including five photos are unidentified wild animals, and 20 photos of livestock. We evaluated the human attitudes towards snow leopard by interviewing with 27 Tibetan householders of 30 householders live in the study area. We propose to establish a nature reserve for protecting and managing snow leopards in the region. Snow leopard (Uncia uncia) is considered as a unique species because it lives above the snow line, it is endemic to alpines in Central Asia, inhabiting in 12 countries across Central Asia (Fox, 1992). Snow leopard ranges in alpine areas in Qinghai, Xinjiang, Inner Mongolia, Tibet, Gansu and Sichuan in western China (Liao, 1985, 1986; Zhou, 1987; Ma et al., 2002; Jiang & Xu, 2006). The total population and habitat of snow leopards in China are estimated to be 2,000~2,500 individuals and 1,824,316 km2, only 5% of which is under the protection of nature reserves. The cat's current range is fragmented (Zou & Zheng, 2003). Due to strong human persecutions, populations of snow leopards decreased significantly since the end of the 20th century. Thus, the
snow leopards are under the protection of international and domestic laws. From March to May, 2006, we conducted two field surveys in Zhiyu Village, Dulan County in Burhanbuda Mountain, Kunlun Mountains, China to determine the population, distribution and survival status of snow leopards in the area. The aim of the study was to provide ecologic data for snow leopard conservation.
|
|