|
Chandra, S., & Laughlin, D. C. (1975). Virus-like particles in cystic mammary adenoma of a snow leopard. Cancer Res, 35(11 Pt 1), 3069–3074.
Abstract: Virus-like particles were observed in the giant cells of a mammary adenoma of a snow leopard kept in captivity. Particles that measured 115 to 125 nm in diameter budded from the lamella of endoplasmic reticulum and were studded on their inner surfaces with dense granules (approximately 12 nm) that gave them their unique ultrastructural morphology. Such particles were not observed extracellularly. Type B or type C particles were not seen in the tumor tissue.
|
|
|
Doster, A. R., Armstrong, D. L., & Bargar, T. W. (1989). Seminoma and parathyroid adenoma in a snow leopard (Panthera unica). J Comp Pathol, 100(4), 475–480.
Abstract: A seminoma and parathyroid adenoma were diagnosed in an aged snow leopard. The ultrastructural appearance of the seminoma was similar to that described in the dog and in man. The lack of significant amounts of rough endoplasmic reticulum, Golgi complexes and free ribosomes in the parathyroid adenoma suggested that it was non-functional. Parathyroid adenoma has not been previously described in a large wild feline.
|
|
|
Edmonds, J. M. (1991). Systematic and Ecogeographic Studies on Crop Gene pools, 6. The distribution of Hibiscus L. section Furcaria in tropical East Africa. Edmonds, J.M.Systematic and Ecogeographic Studies on Crop Genepools, 6.The distribution of Hibiscus L.section Furcaria in tropical East Africa.viii + 60p, .
Abstract: This dissertation presents studies on the use of medetomidine, ketamine, and atipamezole for sedating and immobilizing mammals in captivity. The species studies were markhor (Capra falconeri megaceros), snow leopard (Panthera uncia), and blue fox (Alopex lagopus). The objectives of the study were to investigate the effects of the drugs, to compare the efficacy of the drugs, and to establish useful dose levels. Tables, charts, and graphs complement the text. Six papers on which the thesis is based are appended.
|
|
|
Espinosa-Aviles, D., Taylor, M. L., Del Rocio Reyes-Montes, M., & Pe'rez-Torrez, A. (2008). Molecular findings of disseminated histoplasmosis in two captive snow leopards (Uncia uncia) (Vol. 39).
Abstract: This paper reports two cases of disseminated histoplasmosis in captive snow leopards (Uncia uncia). Histoplasmosis was diagnosed based on histopathology, immunohistochemistry, transmission electron microscopy, and molecular findings.
|
|
|
Karesh, W. B., & Kunz, L. L. (1986). Bilateral testicular seminoma in a snow leopard. J Am Vet Med Assoc, 189(9), 1201.
|
|
|
Sundberg, J. P., Van Ranst, M., Montali, R., Homer, B. L., Miller, W. H., Rowland, P. H., et al. (2000). Feline papillomas and papillomaviruses. Vet Pathol, 37(1), 1–10.
Abstract: Papillomaviruses (PVs) are highly species- and site-specific pathogens of stratified squamous epithelium. Although PV infections in the various Felidae are rarely reported, we identified productive infections in six cat species. PV-induced proliferative skin or mucous membrane lesions were confirmed by immunohistochemical screening for papillomavirus-specific capsid antigens. Seven monoclonal antibodies, each of which reacts with an immunodominant antigenic determinant of the bovine papillomavirus L1 gene product, revealed that feline PV capsid epitopes were conserved to various degrees. This battery of monoclonal antibodies established differential expression patterns among cutaneous and oral PVs of snow leopards and domestic cats, suggesting that they represent distinct viruses. Clinically, the lesions in all species and anatomic sites were locally extensive and frequently multiple. Histologically, the areas of epidermal hyperplasia were flat with a similarity to benign tumors induced by cutaneotropic, carcinogenic PVs in immunosuppressed human patients. Limited restriction endonuclease analyses of viral genomic DNA confirmed the variability among three viral genomes recovered from available frozen tissue. Because most previous PV isolates have been species specific, these studies suggest that at least eight different cat papillomaviruses infect the oral cavity (tentative designations: Asian lion, Panthera leo, P1PV; snow leopard, Panthera uncia, PuPV-1; bobcat, Felis rufus, FrPV; Florida panther, Felis concolor, FcPV; clouded leopard, Neofelis nebulosa, NnPV; and domestic cat, Felis domesticus, FdPV-2) or skin (domestic cat, F. domesticus, FdPV-1; and snow leopard, P. uncia, PuPV-2).
|
|