|
Clyde, V. L., Ramsay, E. C., & Bemis, D. A. (1997). Fecal shedding of Salmonella in exotic felids. J.Zoo Wildl.Med, 28(2), 148–152.
Abstract: The authors discuss the occurrence of salmonellosis in collections of exotic felids. Data suggest that zoo employees having contact with cat feces or raw diets have a high rate of occupational exposure to Salmonella and should exercise appropriate hygienic precautions. pcp
|
|
|
Khanyari, M., Oyanedel, R., Khara, A., Sharma, M., Milner-Gulland, E. J., Suryawanshi, K. R., Vineer, H. R., Morgan, E. R. (2024). Predicting and reducing potential parasite infection between migratory livestock and resident Asiatic ibex of Pin valley, India. Journal of Biosciences, 49(50), 1–14.
Abstract: Disease cross-transmission between wild and domestic ungulates can negatively impact livelihoods and wildlife conservation. In Pin valley, migratory sheep and goats share pastures seasonally with the resident Asiatic ibex (Capra sibirica), leading to potential disease cross-transmission. Focussing on gastro-intestinal nematodes (GINs) as determinants of health in ungulates, we hypothesized that infection on pastures would increase over summer from contamination by migrating livestock. Consequently, interventions in livestock that are well-timed should reduce infection pressure for ibex. Using a parasite life-cycle model, that predicts infective larval availability, we investigated GIN transmission dynamics and evaluated potential interventions. Migratory livestock were predicted to contribute most infective larvae onto shared pastures due to higher density and parasite levels, driving infections in both livestock and ibex. The model predicted a c.30-day anti- parasitic intervention towards the end of the livestock’s time in Pin would be most effective at reducing GINs in both hosts. Albeit with the caveats of not being able to provide evidence of interspecific parasite trans- mission due to the inability to identify parasite species, this case demonstrates the usefulness of our predictive model for investigating parasite transmission in landscapes where domestic and wild ungulates share pastures. Additionally, it suggests management options for further investigation.
|
|
|
Qiming, H., & Guoxin, L. (1994). Notes on the keeping of the snow leopard at the Beijing Zoo. In J.L.Fox, & D.Jizeng (Eds.), (pp. 195–197). Usa: Islt.
|
|
|
Sapozhnikov G.N. (1976). Wild sheep in Tajikistan.
Abstract: The monograph provides data concerning taxonomy, morphology, and age variability of wild sheep. There described distribution, number, population composition, behavioral patterns, reproduction, predators and parasites. Besides, a matter of conservation and sustainable use of the species is discussed. Together with wolf, snow leopard is called an enemy of O. o. vignei and argali (O. o. polii).
|
|
|
Sheikin A.O. (1996). Fleas of the carnivores of Kazakhstan (preliminary results of the data 1970-1888).
Abstract: The analysis of the data of national collection of Parasitological museum of Kazakh Antiplague Institute on ectoparasites from 12 species of carnivores that can be found in Kazakhstan: caracal, snow leopard, ermine, mountain weasel etc. helped to determine the species of fleas and their hosts specialization. Fleas were found on 57 animals/ 50 species of fleas were found, which can be specified to 23 genera, the total number is 525. The specific ones for the carnivores are 6 species fleas. The very low density of ectoparasites was indicated for caracal and snow leopard.
|
|
|
Wharton, D., & Mainka, S. A. (1994). Captive Management of the Snow Leopard. In J.L.Fox, & D.Jizeng (Eds.), (pp. 135–148). Usa: Islt.
|
|
|
Yanfa, L. (1994). The care, breeding and diseases of snow leopards in Qinghai, China. In J.L.Fox, & D.Jizeng (Eds.), (pp. 167–175). Usa: Islt.
|
|