|
Alexander, S., A., Zhang, C., Shi, K., Riordan, P. (2016). A granular view of a snow leopard population using camera traps in Central China. Biological Conservation, (197), 27–31.
Abstract: Successful conservation of the endangered snow leopard (Panthera uncia) relies on the effectiveness of monitoring programmes. We present the results of a 19-month camera trap survey effort, conducted as part of a longterm study of the snow leopard population in Qilianshan National Nature Reserve of Gansu Province, China. Weassessed the minimumnumber of individual snowleopards and population density across different sampling periods using spatial capture–recapture methods. Between 2013–2014, we deployed 34 camera traps across an area of 375 km2, investing a total of 7133 trap-days effort. Weidentified a total number of 17–19 unique individuals
from photographs (10–12 adults, five sub-adults and two cubs). The total number of individuals identified and estimated density varied across sampling periods, between 10–15 individuals and 1.46–3.29 snow leopards per 100 km2 respectively. We demonstrate that snow leopard surveys of limited scale and conducted over short sampling periods only present partial views of a dynamic and transient system.We also underline the challenges in achieving a sufficient sample size of captures and recaptures to assess trends in snow leopard population size and/or density for policy and conservation decision-making
|
|
|
Fox, J. L., & Jackson, R. M. (2002). Blue Sheep and Snow Leopards in Bhutan and Trans-Himalayan Nepal: Recent Status Evaluations and Their Application to Research and Conservation.. Islt: Islt.
|
|
|
Froede, K. and J., R. (2001). Snow Leopard Manual Field Study Techniques for the Kingdom Nepal. Kathmandu, Nepal: WWF Nepal.
Abstract: The publication of this manual aims sharing and facilitating the study on snow leopard and its prey species among mid-level professionals interested in conducting fieldwork on their own. The manual is derived from the 1996 “Snow Leopard Survey and Conservation Handbook” written by Dr. Rodney Jackson and Dr. Don Hunter and published by International Snow Leopard Trust (ISLT) based in seatle, Washington, USA. The first section introduces the topic, the second and third section deal with presence/ absence and abundance survey methods. The various survey-froms with instructions are given in the annexes.
Keywords: analysis, census, data, field work, forms, manual, method, methods, monitoring, research, signs, snow leopard, survey, techniques, transects, Uncia uncia
|
|
|
Han, X. M., D. G., Zhang, E., Jones, M., and Jin, T.. (2001). Far eastern leopard and Siberian tiger conservation measures. (pp. 102–103). Harbin: Widlife Conservation Society.
Abstract: Workshop to develop a recovery plan for the wild north China tiger population. October 20th to 23th, 2000, Harbin.
Like the Siberian Tiger, the Far Eastern Leopard is one of China's largest Felidae and lives mainly in the eastern mountains of Jilin Province. The number of leopards is very low and it is even more endangered than the tiger. There is a very close relationship between leopard and tiger conservation, especially in areas where overlap occurs. In these areas, special emphasis has to be placed on each of the species' specific conservation needs. There is urgent need to step up our efforts to study and monitor leopard populations and to develop a conservation strategy. This document contains information of the status and main threats of the Far Eastern leopard and makes recommendations on needed conservation measures.
Keywords: CCT, conservation, conservation needs, conservation strategy, distribution, Jilin Province, leopard, monitoring, Panthera pardus, Panthera tigris, poaching, recovery, Recovery plan, snow
|
|
|
Henschel, P., & Ray, J. (2003). Leopards in African Rainforests: Survey and Monitoring Techniques (Wildlife Conservation Society, Ed.).
Abstract: Monitoring Techniques Forest leopards have never been systematically surveyed in African forests, in spite of their potentially vital ecological role as the sole large mammalian predators in these systems. Because leopards are rarely seen in this habitat, and are difficult to survey using the most common techniques for assessing relative abundances of forest mammals, baseline knowledge of leopard ecology and responses to human disturbance in African forests remain largely unknown. This technical handbook sums up the experience gained during a two-year study of leopards by Philipp Henschel in the Lop‚ Reserve in Gabon, Central Africa, in 2001/2002, supplemented by additional experience from carnivore studies conducted by Justina Ray in southwestern Central African Republic and eastern Congo (Zaire) . The main focus of this effort has been to develop a protocol that can be used by fieldworkers across west and central Africa to estimate leopard densities in various forest types. In developing this manual, Henschel tested several indirect methods to assess leopard numbers in both logged and unlogged forests, with the main effort devoted to testing remote photography survey methods developed for tigers by Karanth (e.g., Karanth 1995, Karanth & Nichols 1998; 2000; 2002), and modifying them for the specific conditions characterizing African forest environments. This handbook summarizes the results of the field testing, and provides recommendations for techniques to assess leopard presence/absence, relative abundance, and densities in African forest sites. We briefly review the suitability of various methods for different study objectives and go into particular detail on remote photography survey methodology, adapting previously developed methods and sampling considerations specifically to the African forest environment. Finally, we briefly discuss how camera trapping may be used as a tool to survey other forest mammals. Developing a survey protocol for African leopards is a necessary first step towards a regional assessment and priority setting exercise targeted at forest leopards, similar to those carried out on large carnivores in Asian and South American forests.
|
|
|
Jackson, R., & Roe, J. (2002). Preliminary Observations On Non-Invasive Techniques for Identifying Individual Snow Leopards and Monitoring Populations.. Islt: Islt.
|
|
|
Jackson, R., Hunter, D.O. (1995). Snow leopard Survey and conservation handbook (First edition).
Abstract: The objectives of this handbook (First edition) are to provide standard procedures for conducting snow leopard status and distribution surveys; suggest uniform methods for assessing the status and relative abundance of large prey species (ungulates such as blue sheep, argali, markhor, Himalayan tahr, urial, ibex, red deer, and roe deer); offer guidance in evaluating habitat quality and identifying the major environmental factors affecting species welfare; and provide standard forms for reporting the results of these field surveys, and a process for feeding information developed by the International Snow Leopard Trust into Snoe Leopard Information Management System (SLIMS).
|
|
|
Johansson, T., A. Johansson, Orjan. McCarthy, Tom. (2011). An Automatic VHF Transmitter Monitoring System for Wildlife Research. Wildlife Society Bulletin, 9999, 1–5.
Abstract: We describe an automated system for monitoring multiple very high frequency (VHF) transmitters, which are commonly employed in wildlife studies. The system consists of a microprocessor-controlled radio-frequency monitor equipped with advanced signal-processing capabilities that communicates with, and relays information to, a user interface unit at a different location. the system was designed for a capture-and-release snow leopard (Panthera uncia) study in Mongolia, where checking trap-site transmitters manually entailed climbing a hill with telemetry equipment several times each day and night. Here, it monitors the trap-site transmitters and actively produces an alarm when any of the traps have been triggered, or if the system has lost contact with any trap-transmitter. The automated system allowed us to constantly monitor transmitters from a research camp, and alerted us each time a trap was triggered. The system has been field-tested for 83 days from mid-September 2010 to mid-december 2010 in the Tost mountain range on the edge of Mongolia's Gobi desert. During this time, the system performed reliably, responding correctly to 45 manually generated alarms and 9 animal captures. The system considerably shortens the time the captured animals spend in traps, and also mitigates the need for manual trap-site transmitter monitoring, greatly reducing risk to the animal and the human effort involved.
|
|
|
Karanth, K. U., Nichols, J.D., Seidensticker, J., Dinerstein, E., David Smith, J.L., McDougal, C., Johnsingh, A.J.T., Chundawat, R.S., Thapar, V. (2003). Science deficiency in conservation practice: the monitoring of tiger populations in India. Animal Conservation, 6, 141–146.
Abstract: Conservation practices are supposed to get refined by advancing scientific knowledge. We study this phenomenon in the context of monitoring tiger populations in India, by evaluating the ‘pugmark census method’ employed by wildlife managers for three decades. We use an analytical framework of modern animal population sampling to test the efficacy of the pugmark censuses using scientific data on tigers and our field observations. We identify three critical goals for monitoring tiger populations, in order of increasing sophistication: (1) distribution mapping, (2) tracking relative abundance, (3) estimation of absolute abundance. We demonstrate that the present census-based paradigm does not work because it ignores the first two simpler goals, and targets, but fails to achieve, the most difficult third goal. We point out the utility and ready availability of alternative monitoring paradigms that deal with the central problems of spatial sampling and observability. We propose an alternative sampling-based approach that can be tailored to meet practical needs of tiger monitoring at different levels of refinement.
|
|
|
Kashkarov, E. (2017). THE SNOW LEOPARD OF KIRGIZIA: NATIONAL SHAME OR NATIONAL PRIDE.239–253.
Abstract: Article examines the problems existing in conservation of the snow leopard in Kirgizia after break-up of the
USSR. Unfortunate situation is common to most of the 14 countries in the snow leopard range, but seems
especially sharp to Kirgizia. Yet half of the century ago Kirgizia has had about 1.5 thousand of the snow
leopards, and today there remains no more than 1/10. In Soviet time Kirgizia was a global supplier of the
snow leopards for the zoo-export � to create a reserve number of endangered cats in captivity. Today, at
least half of the snow leopards in the Zoos of the world are individuals, caught in Kirgizia or their
descendants.
Since independence, Kirgizia has set new records. In Sarychat-Irtash reserve � the best for the snow
leopard in Central Asia, and probably in the whole range � this species was completely destroyed after 3
years of reserve opening... and 17 years later � revived... Situation comes presently back to the worst-case
scenario, and not only for the snow leopard. Author shows how work in this direction social and economic
levers, and what kind future he would like to see in Kirgizia, where he lived for 12 years and was at the
forefront of pioneering research of the snow leopard and its conservation.
Keywords: snow leopard, irbis, ibex, mountain sheep, conservation, range, reserve, monitoring, cameratrap, Sarychat, Kirgizia, Central Asia.
|
|
|
Krofel, M., Oliveira, T., Rovero, F., Groff, C., Augugliaro, C., Oberosler, V., Allen, M. L. (2025). Communication behavior of the snow leopard (Panthera uncia): understanding marking-behavior patterns to optimize camera- trapping studies. Behavioral Ecology and Sociobiology, 79(32), 1–13.
Abstract: Many carnivores rely on marking behavior for intraspecific communication with potential mates and competitors, using scent and visual markings to advertise their use of a territory and allow potential mates to assess their quality. However, obtaining data on communication behaviors of rare and elusive animals can be challenging. To better understand marking behavior of snow leopard (Panthera uncia), we combined camera-trapping, snow-tracking and transect counts of scrapes in the Altai Mountains, Mongolia, and measured frequencies of communication behaviors in both space and time. Next, we explored if this information could be used to improve the efficiency of snow leopard population monitoring through camera-trapping. Using the combination of all three methods, we detected seven communication behaviors. Most visits at marking sites began with sniffing (recorded at 56.4% visits) before progressing to other behaviors. Urine spraying
(17.7% of visits) and scraping (16.8%) were exhibited at significantly more visits than other communication behaviors (flehmen, head/body rubbing, fecal deposition, claw marking). According to the snow-tracking data conducted in optimal habitats, scraping was the most frequent marking behavior with 12.8 scrapes/km, followed by urine marking with 10.5 marks/km. Along 32 transects, we recorded a mean of 8.0 cumulative scrapes/km, with highest marking rates recorded in gorges, which we recommend as prime habitats for deploying camera-traps. Finally, our results suggest that the number of scrapes observed at potential camera-trapping sites represents a good predictor of snow leopard visitation rate. Therefore, this parameter can be used when choosing camera-trapping locations to increase the efficiency of monitoring programs.
|
|
|
Lama, T. T. (2001). Snow Leopard Conservation Annual Progress Report.
|
|
|
Linnell, J., Swenson, J., Landa A., & and Kvam, T. (1998). Methods for monitoring European large carnivores – A worldwide review of relevant experience. NINA Oppdragsmelding, 549, 1–38.
Abstract: Against a background of recovering large carnivore populations in Norway, and many other areas of Europe, it is becoming increasingly important to develop methods to monitor their populations. A variety of parameters can monitored depending on objectives. These parameters include: presence/absense, distribution, population trend indices, minimum counts, statistical estimates of population size, reproductive parameters and health/condition. Three broad categories of monitoring techniques can be recognised each with increasing levels of fieldwork required. The first category includes those techniques that do not require original fieldwork. The second category involves fieldwork, but where individually recognisable carnivores are not available. The third category includes methods where fieldwork has recognisable individuals available. Different mehtods tend to have been used for different species, mainly because of limitations imposed by the different species' ecology. The most precise estimates of population size have been obtained in research projects with relatively small study sites and with the help of radio-telemetry. However, it may be difficult, or impossible, to apply these methods over large monitoring areas. Therefore, in terms of practical management, a combination of minimum counts, supported by an independent index may be more useful than statistical population estimates. All methods should be subject to a careful design process, and power analysis should be conducted to determine the sensitivity of the method to detect changes.
Based on the review of over 200 papers and reports we recommend a package of complementary monitoring methods for brown bear, wolverine, lynx and wolf in Norway. These include the use of observations from the public and reports of predation on livestock to determine broad patterns of distribution, and an index based on hunter observations per hunting day, for all four species. Minimum counts of reproductive units, natal dens, family groups, and packs, should be obtained from snow-tracking for wolverines, lynx and wolves respectively. In addition a track-count index should be obtained for wolverines and lynx. As much data as possible should be obtained of lynx and wolvereines killed in the annual harvest. Brown bears will be difficult to monitor without the use of radio-telemetry, therfore they may require periodic telemetry based, mark-recapture studies. Such a program can easily be constructed within existing central and regional wildlife management structures, but will require extensive involvement from hunters.
|
|
|
Malik, M. M. (1997). The Current Status of Snow Leopards and Their Prey Status and Conservation of Snow Leopard in Pakistan. In R.Jackson, & A.Ashiq (Eds.), (pp. 11–20). Lahore, Pakistan: International Snow Leopard Trust.
|
|
|
McCarthy, T. (1999). Snow Leopard Conservation Plan for the Republic of Mongolia.
|
|
|
Ming, M., Munkhtsog, B., McCarthy, T., McCarthy, K. (2011). Monitor ing of Population Density of Snow Leopard in X injiang. Journal of Ecology and Rural Environment, 27(1), 79–83.
Abstract: The snow leopard (Uncia uncia) is a very rare species in China. The survey of traces of snow leopard in Kunlun, Altay and Tianshan is them a instep of the Project of Snow Leopard in X injiang supported by the International Snow Leopard Trust ( SLT) and the Xinjiang Conservation Fund (XCF). During the field survey from 2004 to 2010, the Xinjiang Snow Leopard Group ( XSLG) spent about 270 days in over 20 different places, covering over 150 transects totaling nearly 190 km, and found 1- 3 traces per kilometer. The traces of snow leopard recorded include dung, odor, chains of footprints, scraping, paw nail marks, lying mark, fur, urine, bloodstain, leftover of prey corpse, roaring and others. Based on tracer image analyses, the XSLG got to know primarily scopes of the domains, distribution and relative density of the snow leopard in these areas. Then the group began to take infrared photos, conducted survey of food sources of the leopards, investigated fur market and paths of trading, and cases of killing, and carry out civil survey through questionnaire, non government organization community service and research on conflicts between grazing and wild life protection. A total of 36 infrared came ras were laid out, working a total of about 2 094 days or 50 256 hours. A total 71 rolls of film were collected and developed, includ ing 32 clear pictures of snow leopards, thus making up a shooting rate or capture rate of 1.53%. It was ascertained that in Tomur Peak area, there were 5- 8 snow leopards roaming within a range of 250 km2, forming a population density of 2��0- 3��2 per 100 km2. After compar ing the various monitoring results, the advantages and limitations of different monitoring methods have been discussed.
|
|
|
Rode, J., Cabanat, A., Pelletier, A., Kaerle, C., Pirog, A., Dufaure de Citres, C., Queney, G., Chaix, B., Vereshagin, A., Casane, D. (2024). Monitoring of snow leopards in the Sarychat- Ertash State Reserve (Kyrgyzstan), between 2011 and 2019, through scat genotyping. SL Reports, 3, 21–36.
Abstract: Snow leopards (Panthera uncia) are a keystone species of Asia’s high mountain ecosystem. The species is assessed as Vulnerable by the IUCN Red List of Threatened Species and is elusive, limiting accurate population assessments that could inform conservation actions. Non-invasive genetic monitoring conducted by citizen scientists offers avenues to provide key data on this species. From 2011 to 2019, OSI-Panthera citizen science expeditions tracked signs of presence of snow leopards and collected scat samples along transects in the main valleys and crests of the Sarychat-Ertash State Reserve (Kyrgyzstan). Scat samples were genotyped at twenty autosomal microsatellite loci and at a X/Y locus (sex identification), allowing an estimation of a minimum of 17 individuals. The genetic recapture of 12 of them provided indications of individuals’ habitat use throughout the reserve. We found putative family relationships between several individuals; however, further research is needed to validate these findings. Our results demonstrate the potential of a citizen science program to collect meaningful data that can inform the conservation management of snow leopards.
|
|
|
Rode, J., Pelletier, A., Fumey, J., Rode, S., Cabanat, A. L., Ouvrard, A., Chaix, B., White, B., Harnden, M., Xuan, N. T., Vereshagin, A., Casane, D. (2020). Diachronic monitoring of snow leopards at Sarychat-Ertash State Reserve (Kyrgyzstan) through scat genotyping: a pilot study. bioRxiv, , 1–21.
Abstract: Snow leopards (Panthera uncia) are a keystone species of Central Asia’s high mountain ecosystem. The species is listed as vulnerable and is elusive, preventing accurate population assessments that could inform conservation actions. Non-invasive genetic monitoring conducted by citizen scientists offers avenues to provide key data on this species that would otherwise be inaccessible. From 2011 to 2015, OSI-Panthera citizen science expeditions tracked signs of presence of snow leopards along transects in the main valleys and crests of the Sarychat-Ertash State Reserve (Kyrgyzstan). Scat samples were genotyped at seven autosomal microsatellite loci and at a X/Y locus for sex identification, which allowed estimating a minimum of 11 individuals present in the reserve from 2011 to 2015. The genetic recapture of 7 of these individuals enabled diachronic monitoring, providing indications of individuals’ movements throughout the reserve. We found putative family relationships between several individuals. Our results demonstrate the potential of this citizen science program to get a precise description of a snow leopard population through time.
|
|
|
Sharkey, W., Milner-Gulland, E. J., Sinovas, P., Keane, A. (2024). A framework for understanding the contributions of local residents to protected area law enforcement. Oryx, , 1–13.
Abstract: Terrestrial and marine protected areas have long been championed as an approach to biodiversity conservation. For protected areas to be effective, equitable and inclusive, the involvement of local residents in their management and governance is considered important. Globally, there are many approaches to involving local residents in protected area law enforcement. However, opportunities for comparing different approaches have been limited by the lack of a clear common framework for analysis. To support a more holistic understanding, we present a framework for analysing the contributions of local residents to protected area law enforcement. Informed by a review of the literature and discussions with conservation practitioners, the framework comprises five key dimensions: (1) the different points in the enforcement system at which local residents are involved, (2) the nature of local participation in decision-making, (3) the type of external support provided to local residents, (4) the different motivating forces for participation, and (5) the extent to which local participation is formalized. We apply the framework to three real-world case studies to demonstrate its use in analysing and comparing the characteristics of different approaches. We suggest this framework could be used to examine variation in local participation within the enforcement system, inform evaluation and frame constructive discussions between relevant stakeholders. With the global coverage of protected areas likely to increase, the framework provides a foundation for better understanding the contributions of local residents to protected area law enforcement.
|
|
|
Shrestha, B. (2008). Prey Abundance and Prey Selection by Snow Leopard (uncia uncia) in the Sagarmatha (Mt. Everest) National Park, Nepal.
Abstract: Predators have significant ecological impacts on the region's prey-predator dynamic and community structure through their numbers and prey selection. During April-December 2007, I conducted a research in Sagarmatha (Mt. Everest) National Park (SNP) to: i) explore population status and density of wild prey species; Himalayan tahr, musk deer and game birds, ii) investigate diet of the snow leopard and to estimate prey selection by snow leopard, iii) identify the pattern of livestock depredation by snow leopard, its mitigation, and raise awareness through outreach program, and identify the challenge and opportunities on conservation snow leopard and its co-existence with wild ungulates and the human using the areas of the SNP. Methodology of my research included vantage points and regular monitoring from trails for Himalayan tahr, fixed line transect with belt drive method for musk deer and game birds, and microscopic hair identification in snow leopard's scat to investigate diet of snow leopard and to estimate prey selection. Based on available evidence and witness accounts of snow leopard attack on livestock, the patterns of livestock depredation were assessed. I obtained 201 sighting of Himalayan tahr (1760 individuals) and estimated 293 populations in post-parturient period (April-June), 394 in birth period (July -October) and 195 November- December) in rutting period. In average, ratio of male to females was ranged from 0.34 to 0.79 and ratio of kid to female was 0.21-0.35, and yearling to kid was 0.21- 0.47. The encounter rate for musk deer was 1.06 and density was 17.28/km2. For Himalayan monal, the encounter rate was 2.14 and density was 35.66/km2. I obtained 12 sighting of snow cock comprising 69 individual in Gokyo. The ratio of male to female was 1.18 and young to female was 2.18. Twelve species (8 species of wild and 4 species of domestic livestock) were identified in the 120 snow leopard scats examined. In average, snow leopard predated most frequently on Himalayan tahr and it was detected in 26.5% relative frequency of occurrence while occurred in 36.66% of all scats, then it was followed by musk deer (19.87%), yak (12.65%), cow (12.04%), dog (10.24%), unidentified mammal (3.61%), woolly hare (3.01%), rat sp. (2.4%), unidentified bird sp. (1.8%), pika (1.2%), and shrew (0.6%) (Table 5.8 ). Wild species were present in 58.99% of scats whereas domestic livestock with dog were present in 40.95% of scats. Snow leopard predated most frequently on wildlife species in three seasons; spring (61.62%), autumn (61.11%) and winter (65.51%), and most frequently on domestic species including dog in summer season (54.54%). In term of relative biomass consumed, in average, Himalayan tahr was the most important prey species contributed 26.27% of the biomass consumed. This was followed by yak (22.13%), cow (21.06%), musk deer (11.32%), horse (10.53%), wooly hare (1.09%), rat (0.29%), pika (0.14%) and shrew (0.07%). In average, domestic livestock including dog were contributed more biomass in the diet of snow leopard comprising 60.8% of the biomass consumed whilst the wild life species comprising 39.19%. The annual prey consumption by a snow leopard (based on 2 kg/day) was estimated to be three Himalayan tahr, seven musk deer, five wooly hare, four rat sp., two pika, one shrew and four livestock. In the present study, the highest frequency of attack was found during April to June and lowest to July to November. The day of rainy and cloudy was the more vulnerable to livestock depredation. Snow leopard attacks occurred were the highest at near escape cover such as shrub land and cliff. Both predation pressure on tahr and that on livestock suggest that the development of effective conservation strategies for two threatened species (predator and prey) depends on resolving conflicts between people and predators. Recently, direct control of free – ranging livestock, good husbandry and compensation to shepherds may reduce snow leopard – human conflict. In long term solution, the reintroduction of blue sheep at the higher altitudes could also “buffer” predation on livestock.
|
|
|
Singh, N., Milner-Gulland, E.J. (2010). Monitoring ungulates in Central Asia: current constraints and future potential. Oryx, , 1–12.
Abstract: Asia’s rangelands and mountains are strongholds for several endemic ungulate species. Little is known about the ecology of these species because of the region’s remoteness and the lack of robust scientific studies. Hunting, habitat modification, increased livestock grazing, disease and development are the major threats to the species. There is an urgent need for better monitoring to identify the size, distribution and dynamics of the populations of these species, and the threats to them, for effective conservation. The feasibility of standard scientific monitoring is greatly influenced by the remoteness of the region, the pre-existing scientific ideology, lack of expertise in the latest monitoring
methods and awareness of biases and errors, and low capacity and logistical and financial constraints. We review the existing methods used for monitoring ungulates, identify the practical and institutional challenges to effective monitoring in Central Asia and categorize the methods based on various criteria so that researchers can plan better monitoring studies suited to particular species. We illustrate these issues using examples from several contrasting ungulate species. We recommend that scientific surveys should be complemented by increases in participatory monitoring, involving local people. The future of ungulate monitoring in Central Asia lies in a better recognition of the existing errors and biases in monitoring programmes and methods, allocation of more monitoring effort in terms of manpower, finances and logistics, understanding of robust scientific
methods and sampling theory and changing the scientific culture, as well as a commitment to ensuring that we monitor the things that matter.
|
|
|
Sumiya, G., Buyantsog, B., & WWF Mongolia Country Office. (2002). Conservation of Snow Leopard in the Turgen and Tsagaan Shuvuut Mountains Through Local Involvement.. Islt: Islt.
|
|
|
Suryawanshi, K. R., Khanyari, M., Sharma, K., Lkhagvajav, P., Mishra, C. (2019). Sampling bias in snow leopard population estimation studies. Population Eccology, , 1–9.
Abstract: Accurate assessments of the status of threatened species and their conservation
planning require reliable estimation of their global populations and robust monitoring
of local population trends. We assessed the adequacy and suitability of studies
in reliably estimating the global snow leopard (Panthera uncia) population. We
compiled a dataset of all the peer-reviewed published literature on snow leopard
population estimation. Metadata analysis showed estimates of snow leopard density
to be a negative exponential function of area, suggesting that study areas have generally
been too small for accurate density estimation, and sampling has often been
biased towards the best habitats. Published studies are restricted to six of the
12 range countries, covering only 0.3�0.9% of the presumed global range of the
species. Re-sampling of camera trap data from a relatively large study site
(c.1684 km2) showed that small-sized study areas together with a bias towards
good quality habitats in existing studies may have overestimated densities by up to
five times. We conclude that current information is biased and inadequate for generating
a reliable global population estimate of snow leopards. To develop a rigorous
and useful baseline and to avoid pitfalls, there is an urgent need for
(a) refinement of sampling and analytical protocols for population estimation of
snow leopards (b) agreement and coordinated use of standardized sampling protocols
amongst researchers and governments across the range, and (c) sampling
larger and under-represented areas of the snow leopard's global range.
|
|