|
Johnson, W. E., Dratch, P. A., Martenson, J. S., & O'Brien, S. J. (1996). Resolution of recent radiations within three evolutionary lineages of Felidae using mitochondrial restriction fragment length polymorphism variation. Journal of Mammalian Evolution, 3(2), 97–120.
Abstract: Patterns of mitochondrial restriction fragment length polymorphism (RFLP) variation were used to resolve more recent relationships among the species of the Felidae ocelot lineage, domestic cat lineage, and pantherine lineage. Twenty-five of 28 restriction enzymes revealed site variation in at least 1 of 21 cat species. The ocelot lineage was resolved into three separate sister taxa groups: Geoffroy's cat (Oncifelis geoffroyi) and kodkod (O. guigna), ocelot (Leopardus pardalis) and margay (L. wiedii), and pampas cat (Lynchailurus colocolo) and most of the tigrina samples (Leopardus tigrina). Within the domestic cat lineage, domestic cat (Felis catus), European wild cat (F. silvestris), and African wild cat (F. libyca) formed a monophyletic trichotomy, which was joined with sand cat (F. margarita) to a common ancestor. Jungle cat (F. chaus) and black-footed cat (F. nigripes) mtDNAs diverged earlier than those of the other domestic cat lineage species and are less closely related. Within the pantherine lineage, phylogenetic analysis identified two distinct groups, uniting lion (P. leo) with leopard (P. pardus) and tiger (P. tigris) with snow leopard (P. uncia).
|
|
|
Johnson, W. E., Eizirik, E., Pecon-Slattery, J., Murphy, W. J., Antunes, A., Teeling, E., et al. (2006). The Late Miocene Radiation of Modern Felidae: A Genetic Assessment (Vol. 311).
Abstract: Modern felid species descend from relatively recent (G11 million years ago) divergence and speciation events that produced successful predatory carnivores worldwide but that have confounded taxonomic classifications. A highly resolved molecular phylogeny with divergence dates for all living cat species, derived from autosomal, X-linked, Y-linked, and mitochondrial gene segments (22,789 base pairs) and 16 fossil calibrations define eight principal lineages produced through at least 10 intercontinental migrations facilitated by sea-level fluctuations. A ghost lineage analysis indicates that available felid fossils underestimate (i.e., unrepresented basal branch length) first occurrence by an average of 76%, revealing a low representation of felid lineages in paleontological remains. The phylogenetic performance of distinct gene classes showed that Y-chromosome segments are appreciably more informative than mitochondrial DNA, X-linked, or autosomal genes in resolving the rapid Felidae species radiation.
|
|
|
Robinson, J. J., Crichlow, A. D., Hacker, C. E., Munkhtsog, B., Munkhtsog, B., Zhang, Y., Swanson, W. F., Lyons, L. A., Janecka, J. E. (2024). Genetic Variation in the Pallas’s Cat (Otocolobus manul) in Zoo-Managed and Wild Populations. Diversity, 16(228), 1–13.
Abstract: The Pallas’s cat (Otocolobus manul) is one of the most understudied taxa in the Felidae family. The species is currently assessed as being of “Least Concern” in the IUCN Red List, but this assessment is based on incomplete data. Additional ecological and genetic information is necessary for the long-term in situ and ex situ conservation of this species. We identified 29 microsatellite loci with sufficient diversity to enable studies into the individual identification, population structure, and phylogeography of Pallas’s cats. These microsatellites were genotyped on six wild Pallas’s cats from the Tibet Autonomous Region and Mongolia and ten cats from a United States zoo-managed population that originated in Russia and Mongolia. Additionally, we examined diversity in a 91 bp segment of the mitochondrial 12S ribosomal RNA (MT-RNR1) locus and a hypoxia-related gene, endothelial PAS domain protein 1 (EPAS1). Based on the microsatellite and MT-RNR1 loci, we established that the Pallas’s cat displays moderate genetic diversity. Intriguingly, we found that the Pallas’s cats had one unique nonsynonymous substitution in EPAS1 not present in snow leopards (Panthera uncia) or domestic cats (Felis catus). The analysis of the zoo-managed population indicated reduced genetic diversity compared to wild individuals. The genetic information from this study is a valuable resource for future research into and the conservation of the Pallas’s cat.
|
|
|
Warren E.Johnson, E. E. (2006). The Late Miocene Radiation of Modern Felidae: A Genetic Assessment (Stephen J.O'Brien Emma Teeling Agostinho Antunes W. J. M. Jill Pecon-Slattery, Ed.) (Vol. 311). Washington D.C.
Abstract: Modern felid species descend from relatively recent (<11 million years ago) divergence and
speciation events that produced successful predatory carnivores worldwide but that have
confounded taxonomic classifications. A highly resolved molecular phylogeny with divergence dates
for all living cat species, derived from autosomal, X-linked, Y-linked, and mitochondrial gene
segments (22,789 base pairs) and 16 fossil calibrations define eight principal lineages produced
through at least 10 intercontinental migrations facilitated by sea-level fluctuations. A ghost lineage
analysis indicates that available felid fossils underestimate (i.e., unrepresented basal branch
length) first occurrence by an average of 76%, revealing a low representation of felid lineages
in paleontological remains. The phylogenetic performance of distinct gene classes showed that
Y-chromosome segments are appreciably more informative than mitochondrial DNA, X-linked,
or autosomal genes in resolving the rapid Felidae species radiation.
|
|
|
Wei, L., Wu, X., & Jiang, Z. (2008). The complete mitochondrial genome structure of snow leopard Panthera uncia.
Abstract: The complete mitochondrial genome (mtDNA) of snow leopard Panthera uncia was obtained by using the polymerase chain reaction (PCR) technique based on the PCR fragments of 30 primers we designed. The entire mtDNA sequence was 16 773 base pairs (bp) in length, and the base composition was: A-5,357ª“,Ž+bp (31.9%); C-4,444ª”,Ž+bp (26.5%); G-2,428ª“,Ž+bp (14.5%); T-4,544ª”,Ž+bp (27.1%). The structural characteristics [0] of the P. uncia mitochondrial genome were highly similar to these of Felis catus, Acinonyx jubatus, Neofelis nebulosa and other mammals. However, we found several distinctive features of the mitochondrial genome of Panthera unica. First, the termination codon of COIII was TAA, which differed from those of F. catus, A. jubatus and N. nebulosa. Second, tRNASer (AGY), which lacked the ''DHU'' arm, could not be folded into the typical cloverleaf-shaped structure. Third, in the control region, a long repetitive sequence in RS-2 (32ª“,Ž+bp) region was found with 2 repeats while one short repetitive segment (9ª”,Ž+bp) was found with 15 repeats in the RS-3 region. We performed phylogenetic analysis based on a 3 816ª",Ž+bp concatenated sequence of 12S rRNA, 16S rRNA, ND2, ND4, ND5, Cyt b and ATP8 for P. uncia and other related species, the result indicated that P. uncia and P. leo were the sister species, which was different from the previous findings. (c) 2008 Springer Science+Business Media B.V.
|
|
|
Zhang, F., Jiang, Z., Zeng, Y., & McCarthy, T. (2007). Development of primers to characterize the mitochondrial control region of the snow leopard (Uncia uncia) (Vol. 7).
Abstract: The snow leopard (Uncia uncia) is a rare carnivore living above the snow line in central Asia. Using universal primers for the mitochondrial genome control region hypervariable
region 1 (HVR1), we isolated a 411-bp fragment of HVR1 and then designed specific primers
near each end of this sequence in the conserved regions. These primers were shown to yield
good polymerase chain reaction products and to be species specific. Of the 12 snow leopards
studied, there were 11 segregating sites and six haplotypes. An identification case of snow
leopard carcass (confiscated by the police) proved the primers to be a useful tool for forensic
diagnosis in field and population genetics studies.
|
|