|
Dhendup, T., Robinson, J. J., Sorger, G., Wangdi, S., Hacker, C., Yuguang, Z., Janecka, J. E. (2025). Population genetic structure of snow leopards (Panthera uncia) in Bhutan and connectivity with regional populations. Global Ecology & Conservation, 62(e03860), 1–13.
Abstract: Bhutan supports a globally important snow leopard (Panthera uncia) population, with recent surveys indicating an increase in population size. To better understand this population, a nationwide survey conducted from 2022 to 2023 combined camera-trapping and non-invasive genetic sampling of scat to estimate abundance and population connectivity. Among 184 collected scat samples, genetic analysis using eight microsatellite markers and the sex-determining region Y identified 21 unique individuals, with a sex ratio skewed towards females (two females per male). Measures of genetic diversity and population connectivity were collected through the genotyping of 21 additional microsatellite loci in 16 individuals. While moderate genetic diversity was observed (HO =0.466 ±0.039, HE =0.496 ±0.034), no distinct population clusters were detected in the sampled population. On a regional scale, snow leopards from Bhutan share the most connectivity with populations in Nepal and Tibet rather than Qinghai, China, with evidence of dispersal events from Bhutan into Nepal and Tibet, China. Bhutan’s role as a potential source population for Nepal and Tibet underscores the importance of maintaining connectivity across protected areas in the region.
|
|
|
Janecka, J. E., Jackson, R., Munkhtsog, B., Murphy, W. J. (2014). Characterization of 9 microsatellites and primers in snow leopards and a species-specific PCR assay for identifying noninvasive samples. Conservation Genetic Resource, 6(2), 369:373.
Abstract: Molecular markers that can effectively identify noninvasively collected samples and provide genetic
information are critical for understanding the distribution, status, and ecology of snow leopards (Panthera uncia). However, the low DNA quantity and quality in many
noninvasive samples such as scats makes PCR amplification and genotyping challenging. We therefore designed primers for 9 microsatellites loci previously isolated in the
domestic cat (Felis catus) specifically for snow leopard studies using noninvasive samples. The loci showed moderate levels of variation in two Mongolian snow leopard
populations. Combined with seven other loci that we previously described, they have sufficient variation (He = 0.504, An = 3.6) for individual identification and
population structure analysis. We designed a species species specific PCR assay using cytochrome b for identification of unknown snow leopard samples. These molecular markers
facilitate in depth studies to assess distribution, abundance, population structure, and landscape connectivity of this endangered species.
endangered species
|
|
|
Janecka, J. E., Jackson, R., Munkhtsog, B., Murphy, W. J. (2014). Characterization of 9 microsatellites and primers in snow leopards and a species-specific PCR assay for identifying noninvasive samples. Conservation Genetic Resource, 6(2), 369:373.
Abstract: Molecular markers that can effectively identify noninvasively collected samples and provide genetic
information are critical for understanding the distribution, status, and ecology of snow leopards (Panthera uncia). However, the low DNA quantity and quality in many
noninvasive samples such as scats makes PCR amplification and genotyping challenging. We therefore designed primers for 9 microsatellites loci previously isolated in the
domestic cat (Felis catus) specifically for snow leopard studies using noninvasive samples. The loci showed moderate levels of variation in two Mongolian snow leopard
populations. Combined with seven other loci that we previously described, they have sufficient variation (He = 0.504, An = 3.6) for individual identification and
population structure analysis. We designed a species species specific PCR assay using cytochrome b for identification of unknown snow leopard samples. These molecular markers
facilitate in depth studies to assess distribution, abundance, population structure, and landscape connectivity of this endangered species.
|
|
|
Korablev, M. P., Poyarkov, A. D., Karnaukhov, A. S., Zvychaynaya, E. Y., Kuksin, A. N., Malykh, S. V., Istomov, S. V., Spitsyn, S. V., Aleksandrov, D. Y., Hernandez-Blanco, J. A., Munkhtsog, B., Munkhtogtokh, O., Putintsev, N. I., Vereshchagin, A. S., Becmurody, A., Afzunov, S., Rozhnov, V. V. (2021). Large-scale and fine-grain population structure and genetic diversity of snow leopards (Panthera uncia Schreber, 1776) from the northern and western parts of the range with an emphasis on the Russian population. Conservation Genetics, .
Abstract: The snow leopard (Panthera uncia Schreber, 1776) population in Russia and Mongolia is situated at the northern edge of the range, where instability of ecological conditions and of prey availability may serve as prerequisites for demographic instability and, consequently, for reducing the genetic diversity. Moreover, this northern area of the species distribution is connected with the western and central parts by only a few small fragments of potential habitats in the Tian-Shan spurs in China and Kazakhstan. Given this structure of the range, the restriction of gene flow between the northern and other regions of snow leopard distribution can be expected. Under these conditions, data on population genetics would be extremely important for assessment of genetic diversity, population structure and gene flow both at regional and large-scale level. To investigate large-scale and fine-grain population structure and levels of genetic diversity we analyzed 108 snow leopards identified from noninvasively collected scat samples from Russia and Mongolia (the northern part of the range) as well as from Kyrgyzstan and Tajikistan (the western part of the range) using panel of eight polymorphic microsatellites. We found low to moderate levels of genetic diversity in the studied populations. Among local habitats, the highest heterozygosity and allelic richness were recorded in Kyrgyzstan (He = 0.66 ± 0.03, Ho = 0.70 ± 0.04, Ar = 3.17) whereas the lowest diversity was found in a periphery subpopulation in Buryatia Republic of Russia (He = 0.41 ± 0.12, Ho = 0.29 ± 0.05, Ar = 2.33). In general, snow leopards from the western range exhibit greater genetic diversity (He = 0.68 ± 0.04, Ho = 0.66 ± 0.03, Ar = 4.95) compared to those from the northern range (He = 0.60 ± 0.06, Ho = 0.49 ± 0.02, Ar = 4.45). In addition, we have identified signs of fragmentation in the northern habitat, which have led to significant genetic divergence between subpopulations in Russia. Multiple analyses of genetic structure support considerable genetic differentiation between the northern and western range parts, which may testify to subspecies subdivision of snow leopards from these regions. The observed patterns of genetic structure are evidence for delineation of several management units within the studied populations, requiring individual approaches for conservation initiatives, particularly related to translocation events. The causes for the revealed patterns of genetic structure and levels of genetic diversity are discussed.
|
|
|
Miroslav, P. K., Grachev, A. A., Poyarkov, A. D., Saparbayev, S. K., Hernandez-Blanco, J. A., Bespalov, S. V., Bespalov, M. V., Baidavletov, Y. R., Alexandrov, D. Y., Karnaukhov, A. S., Malykh, S. V., Munkhtsog, B., Bayaraa, M., Rozhnov, V. V. (2025). Evaluating snow leopard population connectivity: is Kazakhstan a bridge for gene flow between the northern and southwestern range? Mammalian Biology, , 1–14.
Abstract: The number of studies on snow leopard (Panthera uncia) ecology has surged dramatically over the past few decades. However, despite this increase, many essential aspects of the species biology, which are critical for shaping effective conservation and management strategies, remain poorly understood. A particularly crucial area of research is the population connectivity and genetic structure of snow leopards across their naturally fragmented range. In our study, we focused on the Dzungarian region, specifically Kazakhstan, which has been repeatedly identified as a potentially significant area of connectivity between the southwestern and northern portions of the snow leopard range. We analyzed 54 sequences of mtDNA control region and 73 individual microsatellite multilocus genotypes of snow leopards from Russia, Mongolia, Kyrgyzstan, Tajikistan, and Kazakhstan to recognize both historical and recent signatures of gene flow between the major fragmented regions of the species’ distribution. Our results confirm the Dzungarian region’s role as a crucial area of connectivity between the core and northern populations, thereby providing empirical support for prior habitat- and connectivity-model predictions. However, we did not find clear evidence to unambiguously identify whether Kazakhstan or Chinese Xinjiang serves as the primary corridor linking these two fragmented parts of the snow leopard range. Further research efforts are needed to gain a comprehensive understanding of population connectivity in this focal region. Considering the Dzungarian region’s potential to support gene flow between the two major portions of the snow leopard range, conservation strategies should prioritize the preservation of habitats that can function as “stepping stones” to facilitate migration between the Tian Shan and the northern populations in Mongolia and Russia.
|
|
|
Robinson, J. J., Crichlow, A. D., Hacker, C. E., Munkhtsog, B., Munkhtsog, B., Zhang, Y., Swanson, W. F., Lyons, L. A., Janecka, J. E. (2024). Genetic Variation in the Pallas’s Cat (Otocolobus manul) in Zoo-Managed and Wild Populations. Diversity, 16(228), 1–13.
Abstract: The Pallas’s cat (Otocolobus manul) is one of the most understudied taxa in the Felidae family. The species is currently assessed as being of “Least Concern” in the IUCN Red List, but this assessment is based on incomplete data. Additional ecological and genetic information is necessary for the long-term in situ and ex situ conservation of this species. We identified 29 microsatellite loci with sufficient diversity to enable studies into the individual identification, population structure, and phylogeography of Pallas’s cats. These microsatellites were genotyped on six wild Pallas’s cats from the Tibet Autonomous Region and Mongolia and ten cats from a United States zoo-managed population that originated in Russia and Mongolia. Additionally, we examined diversity in a 91 bp segment of the mitochondrial 12S ribosomal RNA (MT-RNR1) locus and a hypoxia-related gene, endothelial PAS domain protein 1 (EPAS1). Based on the microsatellite and MT-RNR1 loci, we established that the Pallas’s cat displays moderate genetic diversity. Intriguingly, we found that the Pallas’s cats had one unique nonsynonymous substitution in EPAS1 not present in snow leopards (Panthera uncia) or domestic cats (Felis catus). The analysis of the zoo-managed population indicated reduced genetic diversity compared to wild individuals. The genetic information from this study is a valuable resource for future research into and the conservation of the Pallas’s cat.
|
|
|
Waits, L. P., Buckley-Beason, V. A., Johnson, W. E., Onorato, D., & McCarthy, T. (2006). A select panel of polymorphic microsatellite loci for individual identification of snow leopards (Panthera uncia)
(Vol. 7).
Abstract: Snow leopards (Panthera uncia) are elusive endangered carnivores found in remote mountain regions of Central Asia. New methods for identifying and counting snow leopards are needed for conservation and management efforts. To develop molecular genetic tools for individual identification of hair and faecal samples, we screened 50 microsatellite loci developed for the domestic cat (Felis catus) in 19 captive snow leopards. Forty-eight loci were polymorphic with numbers of alleles per locus ranging from two to 11. The probability of observing matching genotypes for unrelated individuals (2.1 x10-11) and siblings (7.5x10-5) using the 10 most polymorphic loci was low, suggesting that this panel would easily discriminate among individuals in the wild.
|
|