|
Ahlborn, G., & Jackson, R. M. (1988). Marking in Free-Ranging Snow Leopards in West Nepal: A preliminary assesment. In H.Freeman (Ed.), (pp. 25–49). India: Snow Leopard Trust and the Wildlife Institute of India.
Abstract: Describes and Quantifies snow leopard marking behaviour, based primarily on sign, gatherd during a four year study in Nepal. Emphasis is on scrapes and spray markings, detailing their frequency of occurence realtive to habitat characteristics and season. Both sexes mark intensively, sign abundance is associated with intensity of use, and sign is concentrated along breaks in terrain.
|
|
|
Ahmad, I., Hunter, D. O., & Jackson, R. (1997). A Snow Leopard and Prey Species Survey in Khunjerab National Park, Pakistan. In R.Jackson, & A.Ahmad (Eds.), (pp. 92–95). Lahore, Pakistan: Islt.
|
|
|
Allen, M. L., Rovero, F., Oberosler, V., Augugliaro, C., Krofel, M. (2023). Effects of snow leopards (Panthera uncia) on olfactory communication of Pallas’s cats (Otocolobus manul) in the Altai Mountains, Mongolia. Behaviour, , 1–9.
Abstract: Olfactory communication is important for many solitary carnivores to delineate territories and communicate with potential mates and competitors. Pallas’s cats (Otocolobus manul) are small felids with little published research on their ecology and behaviour, including if they avoid or change behaviours due to dominant carnivores. We studied their olfactory communication and visitation at scent-marking sites using camera traps in two study areas in Mongolia. We documented four types of olfactory communication behaviours, and olfaction (sniffing) was the most frequent. Pallas’s cats used olfactory communication most frequently at sites that were not visited by snow leopards (Panthera uncia) and when they used communal scent-marking sites, they were more likely to use olfactory communication when a longer time had elapsed since the last visit by a snow leopard. This suggests that Pallas’s cats may reduce advertising their presence in response to occurrence of snow leopards, possibly to limit predation risk.
|
|
|
Blomqvist, L., & Nystrom, V. (1980). On identifying snow leopards, Panthera uncia, by their facial markings. International Pedigree Book of Snow Leopards, , 159–167.
|
|
|
Fox, J. L., & Chundawat, R. S. (1997). Evaluation of Snow Leopard Sign Abundance in the Upper Indus Valley. In R.Jackson, & A.Ahmad (Eds.), (pp. 66–74). Lahore, Pakistan: Islt.
|
|
|
Fox, J. L., Sinha, S. P., Chundawat R.S., & Das, P. K. (1988). A Field Survey of Snow Leopard Presence and Habitat use in Northwestern India. In H.Freeman (Ed.), (pp. 99–111). India: International Snow Leoaprd Trust and Wildlife Institute of India.
Abstract: During November 1985 through July1996, a survey of snow leopard presence and ecology was conducted in selected areas of the states of Jammu and Kashmir, Himachal Pradesh, and Uttar Pradesh in north-western India. The study was carried out under the auspices of the Wildlife Institute of India in cooperation with the U.S. Fish and Wildlife Service and the International Snow Leopard Trust. The objectives of the survey were essentially determine the relative presence of the snow leopard and its associated prey species,investigate human interaction with the snow leopard and select an appropriate site for more intensive studies of the snow leopard and its ecosystem.
|
|
|
Jackson, R., & Fox, J. L. (1997). Snow Leopard Conservation: Accomplishments and Research Priorities. In R.Jackson, & A.Ahmad (Eds.), (pp. 128–144). Pakistan: Islt.
|
|
|
Jackson, R., Roe, J., Wangchuk, R., & Hunter, D. (2005). Camera-Trapping of Snow Leopards. Cat News, 42(Spring), 19–21.
Abstract: Solitary felids like tigers and snow leopards are notoriously difficult to enumerate, and indirect techniques like pugmark surveys often produce ambiguous information that is difficult to interpret because many factors influence marking behavior and frequency (Ahlborn & Jackson 1988). Considering the snow leopard's rugged habitat, it is not surprising then that information on its current status and occupied range is very limited. We adapted the camera-trapping techniques pioneered by Ullas Karanth and his associates for counting Bengal tigers to the census taking of snow leopards in the Rumbak watershed of the India's Hemis High Altitude National Park (HNP), located in Ladakh near Leh (76ø 50' to 77ø 45' East; 33ø 15' to 34ø 20'North).
|
|
|
Jackson, R. M. (1996). Home Range, Movements and Habitat use of Snow Leopard (Uncia uncia) in Nepal. Ph.D. thesis, University of London, University of London.
Abstract: Home ranges for five radio-tagged snow leopards (Uncia uncia) inhabiting prime habitat in Nepal Himalaya varied in size from 11-37 km2. These solitary felids were crepuscular in activity, and although highly mobile, nearly 90% of all consecutive day movements involved a straight line distance of 2km or less. No seasonal difference in daily movement or home range boundry was detected. While home ranges overlapped substancially, use of common core spaces was temporally seperated, with tagged animals being located 1.9 km or more apart during the smae day. Spatial analysis indicated that 47-55% of use occured within only 6-15% of total home area. The snow leopards shared a common core use area, which was located at a major stream confuence in an area where topography, habitat and prey abundance appeared to be more favorable. A young female used her core area least, a female with two cubs to the greatest extent. the core area was marked significantly more with scrapes, Faeces and other sighn than non-core sites, suggesting that social marking plays an important role in spacing individuals. Snow leopards showed a strong preference for bedding in steep, rocky or broken terrain, on or close to a natural vegetation or landform edge. linear landform features, such as a cliff or major ridgeline, were preferred for travelling and day time resting. This behavior would tend to place a snow leopard close to its preferred prey, blue sheep (Psuedois nayaur), which uses the same habitat at night. Marking was concetrated along commonly travelled routes, particularly river bluffs, cliff ledges and well defined ridgelines bordering stream confluences--features that were most abundant within the core area. Such marking may facilitate mutual avoidance, help maintain the species' solitary social structure, and also enable a relatively high density of snow leopard, especially within high-quality habitat.
|
|
|
Jackson, R. M., & Ahlborn, G. (1988). Observations on the Ecology of Snow Leopard in West Nepal. In H.Freeman (Ed.), (pp. 65–87). India: Snow Leopard Trust and Wildlife Institute of India.
Abstract: This summary of a four year field study by Jackson and Ahlborn begging in 1982 and concluding in 1985, discusses behaviour, trapping and tracking techniques, home range, activity patterns, prey and habitat and survey methods.
|
|
|
Koshkarev, E. (1997). Has the Snow Leopard Disappeared from Eastern Sayan and Western Hovsogol? In R.Jackson, & A.Ahmad (Eds.), (pp. 96–107). Lahore, Pakistan: Islt.
|
|
|
Mallon, D. P. (1988). A Further Report on The Snow Leopard in Ladakh. In H.Freeman (Ed.), (pp. 89–97). India: Snow Leopard Trust and Wildlife Institute of India.
Abstract: A detailed knowledge of the ecology of a species is fundemental to the drawing up of effective conservation measures. One aim of the current project was to identify good areas of snow leopard habitatand evaluate them for possible inclusion in the Protected Area Network. Several good areas were surveyed and an outstanding area identified, and included in a report to the Chief Wildlife Warden.
|
|
|
Matyushkin, E. N. (2000). Tracks and tracking techniques in studies of large carnivorous mammals. Zoologichesky Zhurnal, 79((4)), 412–429.
Abstract: In Russia, traditions of track observations and the use of tracking techniques in studying the ecology and behavior of mammals were founded by A.N. Formozov. An analytic review of his data on large carnivorous mammals (tiger, snow leopard, wolf, brown bear, wolverine, and others) is given. A special detailed observation of animals' tracks as a source of information on their life is shown only to start. The efficiency of track observations in various fields of studies, including counting animals, is estimated. The values of day and night distances for various animal species, given in literature, have never been properly substantiated methodically. The tracking method is the most effective in studying the use of the home range by animals, drawing the network of their movements and scent-marking behavior. The hunting behavior of large predators in dense forests is can only be deduced by observing their tracks. In some cases, the use of tracking has a distinct advantage over radio tracking. The main propositions are illustrated by the materials of the author obtained in various Russian regions (in forests of the northern Russian Plain and southern Far east) for 1958-1998.
|
|
|
McCarthy, T. (1999). Snow leopard conservation project, Mongolia: WWF Project Summary of Field Work.
|
|
|
McCarthy, T., & Munkhtsog, B. (1997). Preliminary Assessment of Snow Leopard Sign Surveys in Mongolia. In R.Jackson, & A.Ahmad (Eds.), (pp. 57–65). Lahore, Pakistan: Islt.
|
|
|
Ming, M., Munkhtsog, B., Xu, F., Turghan, M., Yin, S. -jing, & Wei, S. - D. (2005). Markings as Indicator of Snow Leopard in Field Survey, in Xinjiang.
Abstract: The Snow Leopard (Uncia uncia) was a very rare species in China. The survey on the markings of Snow Leopard in Ahay and Tianshan Mountains is the major activity of the Project of Snow Leopard in Xinjiang, supported by International Snow Leopard Trust(ISLT)and Xinjiang Conservation Fund(XCF). During the field work from Sep to Nov 2004 the Xinjiang Snow Leopard Group(XSLG) set 67 transects of a total length of 47 776 m with mean transect length is 7 1 3 m at 9 locations.Total of 1 l 8 markings of Snow Leopards were found in 27 transects the mean density is 247km. The markings of Snow Leopard included the pug marks or footprints, scrapes, feces, bloodstain, scent spray, urine, hair or fur, claw rake, remains of prey corpse, sleep site, roar and others. From the quantity and locations of marks the XSLG got the information on habitat selection distribution region and relative abundance of the Snow Leopard in the study areas. The survey also provided knowledge on distribution and abundance of major prey potential conservation problems and human attitudes to Snow Leopards by taking 200 questionnaires in the study areas.
|
|
|
Rieger, I. (1978). Scent marking behaviour of ounces, Uncia uncia. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards, Vol. 1 (Vol. 1, pp. 78–103). Helsinki: Helsinki Zoo.
|
|
|
Schaller, G. B. (1977). Mountain Monarchs: Wild Sheep and Goats of the Himalaya (Wildlife Behavior & Ecology). Chicago: University of Chicago Press.
Abstract: Describes snow leopard status and field observations from studies in Pakistan and Nepal. Review provides some data on snow leopard marking behavior, social relations, food habits and predator behavior.
|
|
|
Schaller, G. B., Tserendeleg, J., & Amarsana, G. (1994). Observations on snow leopards in Mongolia. In J.Fox, & D.Jizeng (Eds.), (pp. 33–42). Usa: Islt.
|
|
|
Zhiryakov V.A. (2002). Ecology and behavior of the Snow leopard in Kazakhstan (Vol. N 1-4.).
Abstract: The data on spreading, numbers and population density of snow leopard in Kazakhstan are given in this article. The total number of the snow leopard in Kazakhstan is evaluated in 100-110 individuals. The everywhere occurred numbers' reduction under the influence of the anthropogenic factors is observed. The snow leopard' inhabitation area varies from 20 to 120 square kilometers depending on its regions. Sex and composition of the population and its aggregative behavior are given. The dynamics of numbers and mortality are estimated.
|
|