|
Ale, S. B. (1994). Snow Leopard in Remote Districts of Nepal (Vol. xii). Seattle: Islt.
|
|
|
Freeman, H., Jackson, R., Hillard, R., & Hunter, D. O. (1994). Project Snow Leopard: a multinational program spearheaded by the International Snow Leopard Trust. In J.L.Fox, & D. Jizeng (Eds.), (pp. 241–245). Usa: Islt.
|
|
|
Jackson, R. (1998). People-Wildlife Conflict Management in the Qomolangma Nature Preserve, Tibet. In W. Ning, D. Miller, L. Zhu, & J. Springer (Eds.), (pp. 40–46). Tibet's Biodiversity: Conservation and Management.. China: Tibet Forestry Department and World Wide Fund for Nature. China Forestry Publishing House.
Abstract: The primary objective of this paper is to report on people-wildlife conflicts arising from crop damage and livestock depredation in the Qomolangma Reserve, with special reference to the management of protected and endangered mammals.
|
|
|
Jackson, R. (1999). Managing people-wildlife conflict in Tibet's Qomolangma National Nature Preserve.
|
|
|
Jackson, R. (2000). Linking Snow Leopard Conservation and People-Wildlife Conflict Resolution, Summary of a multi-country project aimed at developing grass-roots measures to protect the endangered snow leopard from herder retribution. Cat News, 33, 12–15.
|
|
|
Jackson, R. (2000). The Snow Leopard Conservancy, Dedicated to demonstrating innovative, grassroots measures that lead local shepherds to become better stewards of the endangered snow leopard, its prey and habitat.
|
|
|
Jackson, R., & Wangchuk, R. (2004). A Community-Based Approach to Mitigating Livestock Depredation by Snow Leopards (Vol. 9).
Abstract: Livestock depredation by the endangered snow leopard (Panthera uncia) _is an increasingly contentious issue in Himalayan villages, especially in or near protected areas. Mass attacks in which as many as 100 sheep and goats are killed in a single incident inevitably result in retaliation by local villagers. This article describes a community-based conservation initiative to address this problem in Hemis National Park, India. Human-wildlife conflict is alleviated by predator-proofing villagers' nighttime livestock pens and by enhancing household incomes in environmentally sensitive and culturally compatible ways. The authors have found that the highly participatory strategy described here (Appreciative Participatory Planning and Action-APPA) leads to a sense of project ownership by local stakeholders, communal empowerment, self-reliance, and willingness to co-exist with
snow leopards. The most significant conservation outcome of this process is the protection from retaliatory poaching of up to five snow leopards for every village's livestock pens that are made predator-proof._
|
|
|
Khatiwada, J. R., Chalise, M. K., & Kyes, R. (2007). Survey of Snow Leopard (Uncia uncia) and Blue Sheep (Pseudois nayaur) populations in the Kangchenjunga Conservation Area (KCA), Nepal. Final report.
Abstract: This study was carried out in the Kangchenjunga Conservation Area (KCA), Eastern Nepal from Feb – Nov 2007. We used the Snow Leopard Information Management System, SLIMS (second order survey technique) to determine the relative abundance of snow leopard in the upper part of KCA. Altogether, 36 transects (total length of 15.21 km) were laid down in the major three blocks of KCA. 104 Signs (77 scrapes, 20 feces, 2 Scent mark, 3 Pugmarks and 2 hairs) were recorded. Fixed-point count method was applied for blue sheep from appropriate vantage points. We counted total individual in each herd using 8x42 binocular and 15-60x spotting scope. A total of 43 herds and 1102 individuals were observed in the area. The standard SLIMS questionnaire was conducted to find out relevant information on livestock depredation patterns. Out of 35 households surveyed in KCA, 48% of herders lost livestock due to snow leopards. A total of 21 animals were reportedly lost due to snow leopards from August to September 2007.
|
|
|
Mishra, C., Madhusudan, M. D., & Datta, A. (2006). Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs (Vol. 40).
Abstract: The high altitudes of Arunachal Pradesh,India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12 carnivores, 10 ungulates and 5 primates) were recorded, of which 13 are categorized as Endangered or Vulnerable on the IUCN Red List. One species of primate, the Arunachal macaque Macaca munzala, is new to science and the Chinese goral Nemorhaedus caudatus is a new addition to the ungulate fauna of the Indian subcontinent. We documented peoples' dependence on natural resources for grazing and extraction of timber and medicinal plants. The region's mammals are threatened by widespread hunting. The snow leopard Uncia uncia and dhole Cuon alpinus are also persecuted in retaliation for livestock depredation. The tiger Panthera tigris, earlier reported from the lower valleys, is now apparently extinct there, and range reductions over the last two decades are reported for bharal Pseudois nayaur and musk deer Moschus sp.. Based on mammal species richness, extent of high altitude habitat, and levels of anthropogenic disturbance, we identified a potential site for the creation of Arunachal's first high altitude wildlife reserve (815 km2). Community-based efforts that provide incentives for conservation-friendly practices could work in this area, and conservation awareness programmes are required, not just amongst the local communities and schools but for politicians, bureaucrats and the army.
|
|
|
Shrestha, B. (2008). Prey Abundance and Prey Selection by Snow Leopard (uncia uncia) in the Sagarmatha (Mt. Everest) National Park, Nepal.
Abstract: Predators have significant ecological impacts on the region's prey-predator dynamic and community structure through their numbers and prey selection. During April-December 2007, I conducted a research in Sagarmatha (Mt. Everest) National Park (SNP) to: i) explore population status and density of wild prey species; Himalayan tahr, musk deer and game birds, ii) investigate diet of the snow leopard and to estimate prey selection by snow leopard, iii) identify the pattern of livestock depredation by snow leopard, its mitigation, and raise awareness through outreach program, and identify the challenge and opportunities on conservation snow leopard and its co-existence with wild ungulates and the human using the areas of the SNP. Methodology of my research included vantage points and regular monitoring from trails for Himalayan tahr, fixed line transect with belt drive method for musk deer and game birds, and microscopic hair identification in snow leopard's scat to investigate diet of snow leopard and to estimate prey selection. Based on available evidence and witness accounts of snow leopard attack on livestock, the patterns of livestock depredation were assessed. I obtained 201 sighting of Himalayan tahr (1760 individuals) and estimated 293 populations in post-parturient period (April-June), 394 in birth period (July -October) and 195 November- December) in rutting period. In average, ratio of male to females was ranged from 0.34 to 0.79 and ratio of kid to female was 0.21-0.35, and yearling to kid was 0.21- 0.47. The encounter rate for musk deer was 1.06 and density was 17.28/km2. For Himalayan monal, the encounter rate was 2.14 and density was 35.66/km2. I obtained 12 sighting of snow cock comprising 69 individual in Gokyo. The ratio of male to female was 1.18 and young to female was 2.18. Twelve species (8 species of wild and 4 species of domestic livestock) were identified in the 120 snow leopard scats examined. In average, snow leopard predated most frequently on Himalayan tahr and it was detected in 26.5% relative frequency of occurrence while occurred in 36.66% of all scats, then it was followed by musk deer (19.87%), yak (12.65%), cow (12.04%), dog (10.24%), unidentified mammal (3.61%), woolly hare (3.01%), rat sp. (2.4%), unidentified bird sp. (1.8%), pika (1.2%), and shrew (0.6%) (Table 5.8 ). Wild species were present in 58.99% of scats whereas domestic livestock with dog were present in 40.95% of scats. Snow leopard predated most frequently on wildlife species in three seasons; spring (61.62%), autumn (61.11%) and winter (65.51%), and most frequently on domestic species including dog in summer season (54.54%). In term of relative biomass consumed, in average, Himalayan tahr was the most important prey species contributed 26.27% of the biomass consumed. This was followed by yak (22.13%), cow (21.06%), musk deer (11.32%), horse (10.53%), wooly hare (1.09%), rat (0.29%), pika (0.14%) and shrew (0.07%). In average, domestic livestock including dog were contributed more biomass in the diet of snow leopard comprising 60.8% of the biomass consumed whilst the wild life species comprising 39.19%. The annual prey consumption by a snow leopard (based on 2 kg/day) was estimated to be three Himalayan tahr, seven musk deer, five wooly hare, four rat sp., two pika, one shrew and four livestock. In the present study, the highest frequency of attack was found during April to June and lowest to July to November. The day of rainy and cloudy was the more vulnerable to livestock depredation. Snow leopard attacks occurred were the highest at near escape cover such as shrub land and cliff. Both predation pressure on tahr and that on livestock suggest that the development of effective conservation strategies for two threatened species (predator and prey) depends on resolving conflicts between people and predators. Recently, direct control of free – ranging livestock, good husbandry and compensation to shepherds may reduce snow leopard – human conflict. In long term solution, the reintroduction of blue sheep at the higher altitudes could also “buffer” predation on livestock.
|
|