|
Chaudhuri, S., Mukherjee, S. K., Chatterjee, A., & Ganguli, J. L. (1992). Isolation of P multocida F-3, 4 from a stillborn snow leopard. Vet Rec, 130(2), 36.
|
|
|
Hongguang, H. (1994). Case report of a subadult snow leopard with serious acute shock pneumonia. In J.L.Fox, & D.Jizeng (Eds.), (pp. 217–219). Usa: Islt.
|
|
|
Isenbugel, E., Weilenmann, P., & Rubel, A. (1994). Breeding of snow leopards in the zoo of Zurich: veterinary aspects. In J.L.Fox, & and D.Jizeng (Eds.), (pp. 201–202). Usa: Islt.
|
|
|
Janovsky, M., Grone, A., Ciardo, D., Vollm, J., Burnens, A., Fatzer, R., et al. (2006). Phaeohyphomycosis in a Snow Leopard (Uncia uncia) due to Cladophialophora bantiana (Vol. 134).
Abstract: Phaeohyphomycosis caused by Cladophialophora bantiana was diagnosed in a 5-month-old snow leopard with spastic paralysis of the hind legs and inability to defaecate or urinate. At post-mortem examination, a greenish soft mass resembling an abscess was found on one side of the epidural space at the fourth lumbar vertebral body. Histological examination revealed a purulent meningitis with myelomalacia. Dematiaceous fungal hyphae, present within the inflammatory infiltrate, were identified as C. bantiana by culture and sequence analysis of the 18S ribosomal RNA gene. This neurotropic fungus rarely affects organs other than the brain in human beings and cats, and has been reported only occasionally in Europe. The case described suggests that phaeohyphomycosis due to C. bantiana infection may be recognized more frequently in the future and the possible involvement of organs other than the brain should be borne in mind.
|
|
|
Lutz, H., Hofmann-Lehmann, R., Fehr, D., Leutenegger, C., Hartmann, M., Ossent, P., et al. (1996). Liberation of the wilderness of wild felids bred under human custody: Danger of release of viral infections. Schweizer Archiv fuer Tierheilkunde, 138(12), 579–585.
Abstract: There are several felidae amongst the numerous endangered species. Means of aiding survival are the reintroduction to the wild of animals bred under the auspices of man and their relocation from densely populated to thinly populated areas. It is unlikely that the dangers of such reintroduction or relocation projects have been examined sufficiently in respect to the risks of virus infections confronting individuals kept in zoos or similar situations. This report presents infections may be expected to occur when relo- three examples to illustrate that accidental virus cating and reintroducing wild cats. The first example is the reintroduction of captive snow leopards. Zoo bred snow leopards may be infected with FIV, a virus infection that is highly unlikely to occur in the original hirnalayan highlands of Tibet and China. A second example is of several cases of FIP that occured in European wild cats bred in groups in captivity. The third example mentioned is the relocation of hons from East Africa where all the commonly known feline viruses are wide-spread to the Etosha National Park. In the latter, virus infections such as FIV, FCV and FPV do not occur. The indiscriminate relocation and reintroduction of the wild cats mentioned here harbours a potential of undesirable consequences.
|
|
|
Peilun, X., Hua, H., & Chonghong, L. (1994). Lymphoid interstitial pneumonia of snow leopard-case report. In J.L.Fox, & D.Jizeng (Eds.), (pp. 213–216). Usa: Islt.
|
|
|
Schmidt, R. E., Eisenbrandt, D. L., & Hubbard, G. B. (1984). Tyzzer's disease in snow leopards. J Comp Pathol, 94(1), 165–167.
Abstract: Tyzzer's disease was diagnosed histologically in 2 litters of newborn snow leopard kittens. The gross and histological lesions were similar to those reported in domestic cats and other animals. No signs of illness was noted in either of the snow leopard dams.
|
|
|
Sundberg, J. P., Van Ranst, M., Montali, R., Homer, B. L., Miller, W. H., Rowland, P. H., et al. (2000). Feline papillomas and papillomaviruses. Vet Pathol, 37(1), 1–10.
Abstract: Papillomaviruses (PVs) are highly species- and site-specific pathogens of stratified squamous epithelium. Although PV infections in the various Felidae are rarely reported, we identified productive infections in six cat species. PV-induced proliferative skin or mucous membrane lesions were confirmed by immunohistochemical screening for papillomavirus-specific capsid antigens. Seven monoclonal antibodies, each of which reacts with an immunodominant antigenic determinant of the bovine papillomavirus L1 gene product, revealed that feline PV capsid epitopes were conserved to various degrees. This battery of monoclonal antibodies established differential expression patterns among cutaneous and oral PVs of snow leopards and domestic cats, suggesting that they represent distinct viruses. Clinically, the lesions in all species and anatomic sites were locally extensive and frequently multiple. Histologically, the areas of epidermal hyperplasia were flat with a similarity to benign tumors induced by cutaneotropic, carcinogenic PVs in immunosuppressed human patients. Limited restriction endonuclease analyses of viral genomic DNA confirmed the variability among three viral genomes recovered from available frozen tissue. Because most previous PV isolates have been species specific, these studies suggest that at least eight different cat papillomaviruses infect the oral cavity (tentative designations: Asian lion, Panthera leo, P1PV; snow leopard, Panthera uncia, PuPV-1; bobcat, Felis rufus, FrPV; Florida panther, Felis concolor, FcPV; clouded leopard, Neofelis nebulosa, NnPV; and domestic cat, Felis domesticus, FdPV-2) or skin (domestic cat, F. domesticus, FdPV-1; and snow leopard, P. uncia, PuPV-2).
|
|
|
Thorel, M. F., Karoui, C., Varnerot, A., Fleury, C., & Vincent, V. (1998). Isolation of Mycobacterium bovis from baboons, leopards and a sea-lion. Vet Res, 29(2), 207–212.
Abstract: This study reports on two series of cases of Mycobacterium bovis infection in zoo animals. The first was in a captive population of baboons (Papio hamadryas) and the second in a mixed group of wild mammals, including four leopards (Panthera uncia and Panthera pardus) and a sea-lion (Otaria byrona). The isolation and identification of strains of M. bovis confirmed the presence of M. bovis infections in both zoos. The epidemiological study using genetic markers such as the IS6110-based DNA fingerprinting system made it possible to differentiate between M. bovis strains. The M. bovis strains isolated from baboons were shown to contain a single IS6110 copy, as usually do cattle isolates, whereas the M. bovis strains isolated from the other exotic animals presented multiple copies. This finding suggests that the origin of the contamination for the baboons in zoo A could be related to cattle. The origin of the contamination for the leopards and sea-lion in zoo B is more difficult to determine. In conclusion, the authors suggest some recommendations for avoiding outbreaks of tuberculosis infections in zoos.
|
|