|
Jackson, R. (1987). Snow Cats of Nepal's Langue Gorge. Animal Kingdom, 4, 44–53.
Abstract: Anecdotal account with some general research results of a four year tracking study of the snow leopard in Nepal's Langu valley
|
|
|
Jackson, R. (1992). SSC Plan for Snow Leopard.
|
|
|
Jackson, R., & Ahlborn, G. (1989). Snow leopards (Panthera- uncia) in Nepal – home range and movements. National Geographic Research, 5(2), 161–175.
|
|
|
Jackson, R., & Fox, J. L. (1997). Snow Leopard Conservation: Accomplishments and Research Priorities. In R.Jackson, & A.Ahmad (Eds.), (pp. 128–144). Pakistan: Islt.
|
|
|
Jackson, R. M. (1996). Home Range, Movements and Habitat use of Snow Leopard (Uncia uncia) in Nepal. Ph.D. thesis, University of London, University of London.
Abstract: Home ranges for five radio-tagged snow leopards (Uncia uncia) inhabiting prime habitat in Nepal Himalaya varied in size from 11-37 km2. These solitary felids were crepuscular in activity, and although highly mobile, nearly 90% of all consecutive day movements involved a straight line distance of 2km or less. No seasonal difference in daily movement or home range boundry was detected. While home ranges overlapped substancially, use of common core spaces was temporally seperated, with tagged animals being located 1.9 km or more apart during the smae day. Spatial analysis indicated that 47-55% of use occured within only 6-15% of total home area. The snow leopards shared a common core use area, which was located at a major stream confuence in an area where topography, habitat and prey abundance appeared to be more favorable. A young female used her core area least, a female with two cubs to the greatest extent. the core area was marked significantly more with scrapes, Faeces and other sighn than non-core sites, suggesting that social marking plays an important role in spacing individuals. Snow leopards showed a strong preference for bedding in steep, rocky or broken terrain, on or close to a natural vegetation or landform edge. linear landform features, such as a cliff or major ridgeline, were preferred for travelling and day time resting. This behavior would tend to place a snow leopard close to its preferred prey, blue sheep (Psuedois nayaur), which uses the same habitat at night. Marking was concetrated along commonly travelled routes, particularly river bluffs, cliff ledges and well defined ridgelines bordering stream confluences--features that were most abundant within the core area. Such marking may facilitate mutual avoidance, help maintain the species' solitary social structure, and also enable a relatively high density of snow leopard, especially within high-quality habitat.
|
|
|
Jackson, R. M., & Ahlborn, G. (1988). Observations on the Ecology of Snow Leopard in West Nepal. In H.Freeman (Ed.), (pp. 65–87). India: Snow Leopard Trust and Wildlife Institute of India.
Abstract: This summary of a four year field study by Jackson and Ahlborn begging in 1982 and concluding in 1985, discusses behaviour, trapping and tracking techniques, home range, activity patterns, prey and habitat and survey methods.
|
|
|
Johansson, O., Rauset, G. R., Samelius, G., McCarthy, T., Andren, H., Tumursukh, L., Mishra, C. (2016). Land sharing is essential for snow leopard conservation. Biological Conservation, (203), 1–7.
Abstract: Conserving large carnivores in an increasingly crowded planet raises difficult challenges. A recurring debate is whether large carnivores can be conserved in human used landscapes (land sharing) or whether they require specially designated areas (land sparing). Here we show that 40% of the 170 protected areas in the global range of the snow leopard (Panthera uncia) are smaller than the home range of a single adult male and only 4– 13% are large enough for a 90% probability of containing 15 or more adult females. We used data from 16 snow leopards equipped with GPS collars in the Tost Mountains of South Gobi, Mongolia, to calculate home range size and overlap using three different estimators: minimum convex polygons (MCP), kernel utility distributions (Kernel), and local convex hulls (LoCoH). Local convex hull home ranges were smaller and included lower proportions of unused habitats compared to home ranges based on minimum convex polygons and Kernels. Intra-sexual home range overlapwas low, especially for adult males, suggesting that snowleopards are territorial. Mean home range size based on the LoCoH estimates was 207 km2 ± 63 SD for adult males and 124 km2 ± 41 SD for adult females. Our estimates were 6–44 times larger than earlier estimates based on VHF technology when comparing similar estimators, i.e. MCP. Our study illustrates that protected areas alone will not be able to conserve predatorswith large home ranges and conservationists and managers should not restrict their efforts to land sparing.
|
|
|
Koshkarev, E. (1996). The snow leopard in its northeastern range. Cat News, 25, 10.
Abstract: The author surveyed three sites in the central and eastern Sayan regions of Russia for snow leopards. In the Zhombolok River Basin of the Kropotkinskiy and Okinskiy Mountains, the author found seven snow leopard tracks, representing five or six individuals. In the Munku-Sardyk Peak area, one snow leopard track was found, and in the Tunkinskiy Ranffe area three tracks, representing at least two animals, were found. Other information is provided on local sightings. klf
|
|
|
McCarthy, T., Fuller, T., & Munkhtsog, B. (2005). Movements and activities of snow leopards in Southwestern Mongolia (Vol. 124).
Abstract: Four adult (2M:2F) snow leopards (Uncia uncia) were radio-monitored (VHF; one also via satellite) year-round during 1994-1997 in the Altai Mountains of southwestern Mongolia where prey densities (i.e., ibex, Capra siberica) were relatively low (0.9/km2). Marked animals were more active at night (51%) than during the day (35%). Within the study area, marked leopards showed strong a.nity for steep and rugged terrain, high use of areas rich in ungulate prey, and a.nity for habitat edges. The satellite-monitored leopard moved more than 12 km on 14% of consecutive days monitored. Home ranges determined by standard telemetry techniques overlapped substantially and were at least 13-141 km2in size. However, the satellite-monitored individual apparently ranged over an area of at least 1590 km2, and perhaps over as much as 4500 km2. Since telemetry attempts from the ground were
frequently unsuccessful dx¬ 72%_, we suspect all marked animals likely had large home ranges. Relatively low prey abundance in the area also suggested that home ranges of >500 km2were not unreasonable to expect, though these are >10-fold larger than measured in any other part of snow leopard range. Home ranges of snow leopards may be larger than we suspect in many areas, and thus estimation of snow leopard conservation status must rigorously consider logistical constraints inherent in telemetry studies, and the relative abundance of prey.
|
|
|
McCarthy, T., Murray, K., Sharma, K., & Johansson, O. (2010). Preliminary results of a long-term study of snow leopards in South Gobi, Mongolia. Cat News, Autumn(53), 15–19.
Abstract: Snow leopards Panthera uncia are under threat across their range and require urgent conservation actions based on sound science. However, their remote habitat and cryptic nature make them inherently difficult to study and past attempts have provided insufficient information upon which to base effective conservation. Further, there has been no statistically-reliable and cost-effective method available to monitor snow leopard populations, focus conservation effort on key populations, or assess conservation impacts. To address these multiple information needs, Panthera, Snow Leopard Trust, and Snow Leopard Conservation Fund, launched an ambitious long-term study in Mongolia’s South Gobi province in 2008. To date, 10 snow leo-pards have been fitted with GPS-satellite collars to provide information on basic snow leopard ecology. Using 2,443 locations we calculated MCP home ranges of 150 – 938 km2, with substantial overlap between individuals. Exploratory movements outside typical snow leopard habitat have been observed. Trials of camera trapping, fecal genetics, and occupancy modeling, have been completed. Each method ex-hibits promise, and limitations, as potential monitoring tools for this elusive species.
Keywords: snow leopard, Mongolia, monitor, population, Panthera, Snow Leopard Trust, Snow Leopard Conservation Fund, South Gobi, ecology, radio collar, GPS-satellite collar, home range, camera trapping, fecal genetics, occupancy modeling
|
|