|
Alexander, J. S., Cusack, J. J., Pengju, C, Kun, S., Riordan, P. (2015). Conservation of snow leopards: spill-over benefits for other carnivores? Oryx, (Fauna & Flora International), 1–5.
Abstract: In high-altitude settings of Central Asia the
Endangered snow leopard Panthera uncia has been recognized
as a potential umbrella species. As a first step in assessing
the potential benefits of snow leopard conservation for
other carnivores, we sought a better understanding of the
presence of other carnivores in areas occupied by snow leopards
in China’s Qilianshan National Nature Reserve. We
used camera-trap and sign surveys to examine whether
other carnivores were using the same travel routes as snow
leopards at two spatial scales. We also considered temporal
interactions between species. Our results confirm that other
carnivores, including the red fox Vulpes vulpes, grey wolf
Canis lupus, Eurasian lynx Lynx lynx and dhole Cuon alpinus,
occur along snow leopard travel routes, albeit with low detection
rates. Even at the smaller scale of our camera trap survey
all five carnivores (snow leopard, lynx, wolf, red fox and
dhole) were observed. Kernel density estimates suggested a
high degree of temporal overlap between the snow leopard
and the fox, and the snow leopard and the lynx, as indicated
by high overlap coefficient estimates. There is an opportunity
to consider protective measures at the local scale that would
benefit various species simultaneously. However, it should
also be recognized that snow leopard conservation efforts
could exacerbate human–wildlife conflicts through their protective
effect on other carnivore species.
|
|
|
Aryal, A. (2009). Final Report On Demography and Causes of Mortality of Blue Sheep (Pseudois nayaur) in Dhorpatan Hunting Reserve in Nepal.
Abstract: A total of 206 individual Blue sheep Pseudois nayaur were estimated in Barse and Phagune blocks of Dhorpatan Hunting Reserve (DHR) and population density was 1.8 Blue sheep/sq.km. There was not significant change in population density from last 4 decades. An average 7 animals/herd (SD-5.5) were classified from twenty nine herds, sheep per herds varying from 1 to 37. Blue sheep has classified into sex ratio on an average 75 male/100females was recorded in study area. The sex ratio was slightly lower but not significantly different from the previous study. Population of Blue sheep was seen stable or not decrease even there was high poaching pressure, the reason may be reducing the number of predators by poison and poaching which has
supported to increase blue sheep population. Because of reducing the predators Wolf Canis lupus, Wild boar population was increasing drastically in high rate and we can observed wild boar above the tree line of DHR. The frequency of occurrence of different prey species in scats of different predators shows that, excluding zero values, the frequencies of different prey species were no significantly different (ö2= 10.3, df = 49, p > 0.05). Most of the scats samples (74%) of Snow leopard, Wolf, Common Leopard, Red fox's cover one prey species while two and three species were present in 18% and 8%, respectively. Barking deer Muntiacus muntjak was the most frequent (18%) of total diet composition of common leopards. Pika Ochotona roylei was the most frequent (28%), and Blue sheep was in second position for diet of snow leopards which cover 21% of total diet composition. 13% of diet covered non-food item such as soil, stones, and vegetable. Pika was most frequent on Wolf and Red fox diet which covered 32% and 30% respectively. There was good positive relationship between the scat density and Blue sheep consumption rate, increasing the scat density, increasing the Blue sheep consumption rate. Blue sheep preference by different predators such as Snow leopard, Common leopard, Wolf and Red fox were 20%, 6%, 13% and 2% of total prey species respectively.
|
|
|
Jiang, Z. (2005). Snow leopards in the Dulan International Hunting Ground, Qinghai, China.
Abstract: From March to May, 2006œªwe conducted extensive snow leopard surveys in the Burhanbuda Mountain Kunlun Mountains, Qinghai Province, China. 32 linear transect of 5~15 km each, which running through each vegetation type, were surveyed within the study area. A total of 72 traces of snow leopard were found along 4 transects (12.5% of total transects). The traces included pug marks or footprints, scrapes and urine marks. We estimated the average density of wild ungulates in the region was 2.88ñ0.35 individuals km-2(n=29). We emplaced 16 auto2 trigger cameras in different environments and eight photos of snow leopard were shot by four cameras and the capture rate of snow leopard was 71.4%. The minimum snow leopard population size in the Burhanbuda Mountain was two, because two snow leopards were phototrapped by different cameras at almost same time. Simultaneously, the cameras also shot 63 photos of other wild animals, including five photos are unidentified wild animals, and 20 photos of livestock. We evaluated the human attitudes towards snow leopard by interviewing with 27 Tibetan householders of 30 householders live in the study area. We propose to establish a nature reserve for protecting and managing snow leopards in the region. Snow leopard (Uncia uncia) is considered as a unique species because it lives above the snow line, it is endemic to alpines in Central Asia, inhabiting in 12 countries across Central Asia (Fox, 1992). Snow leopard ranges in alpine areas in Qinghai, Xinjiang, Inner Mongolia, Tibet, Gansu and Sichuan in western China (Liao, 1985, 1986; Zhou, 1987; Ma et al., 2002; Jiang & Xu, 2006). The total population and habitat of snow leopards in China are estimated to be 2,000~2,500 individuals and 1,824,316 km2, only 5% of which is under the protection of nature reserves. The cat's current range is fragmented (Zou & Zheng, 2003). Due to strong human persecutions, populations of snow leopards decreased significantly since the end of the 20th century. Thus, the
snow leopards are under the protection of international and domestic laws. From March to May, 2006, we conducted two field surveys in Zhiyu Village, Dulan County in Burhanbuda Mountain, Kunlun Mountains, China to determine the population, distribution and survival status of snow leopards in the area. The aim of the study was to provide ecologic data for snow leopard conservation.
|
|
|
Kataevsky V.N. (2002). Mammals of Sary Chelek nature reserve.
Abstract: The 30 species of mammals are presented in Sary Chelek nature reserve, Kyrgyzstan. Comparison of status of mammal's diversity in Soviet period and present time is made. Number decrease for some mammals is noted. Number of snow leopard in Sary Chelek is 2 individuals, Turkestan lynx 3, wolf 10, bear 20, badger 20, fox 25, jackal 25, wild boar 100 individuals. Snow leopard included in national Red data Book and Global Red List.
|
|
|
Ming, M., Chundawat R.S., Jumabay, K., Wu, Y., Aizeizi, Q., & Zhu, M. H. (2006). Camera trapping of snow leopards for the photo capture rate and population size in the Muzat Valley of Tianshan Mountains. Acta Theriologica Sinica, 52(4), 788–793.
Abstract: The main purpose of this work was to study the use of infrared trapping cameras to estimate snow leopard Uncia uncia population size in a specific study area. This is the first time a study of this nature has taken place in China. During 71 days of field work, a total of 36 cameras were set up in five different small vales of the Muzat Valley adjacent to the Tomur Nature Reserve in Xinjiang Province, E80ø35' – 81ø00' and N42ø00' – 42ø10', elevation 2'300 – 3'000 m, from 18th October to 27th December 2005. We expended approximately 2094 trap days and nights total (c. 50'256 hours). At least 32 pictures of snow leopards, 22 pictures of other wild species (e.g. chukor, wild pig, ibex, red fox, cape hare) and 72 pictures of livestock were taken by the passive Cam Trakker (CT) train monitor in about 16 points of the Muzat Valley. The movement distance of snow leopard was 3-10 km/day. And the capture rate or photographic rate of snow leopard was 1.53%. Meanwhile, 20 transects were run and 31 feces sample were collected. According to 32 photos, photographic rate and sign survey after snowing on the spot, were about 5-8 individuals of snow leopards in the research area, and the minimum density of snow leopard in Muzat Valley was 2.0 – 3.2 individuals/100 km2. We observed the behavior of ibex for 77.3 hours, and found about 20 groups and a total of approximately 264 ibexes in the research area.
|
|
|
Namgail, T. (2004). Interactions between argali and livestock, Gya-Miru Wildlife Sanctuary, Ladakh, India, Final Project Report.
Abstract: Livestock production is the major land-use in Ladakh region of the Indian Trans-Himalaya, and is a crucial sector that drives the region's economy (Anon, 2002). Animal products like meat and milk provide protein to the diet of people, while products like wool and pashmina (soft fibre of goats) find their way to the international market. Such high utility of livestock and the recent socio-economic changes in the region have caused an increase in livestock population (Rawat and Adhikari, 2002; Anon. 2002), which, if continue apace, may increase grazing pressure and deteriorate pasture conditions. Thus, there is an urgent need to assess the impact of such escalation in livestock population on the regions wildlife. Although, competitive interaction between wildlife and livestock has been studied elsewhere in the Trans-Himalaya (Bhatnagar et al., 2000; Mishra, 2001; Bagchi et al., 2002), knowledge on this aspect in the Ladakh region is very rudimentary. The rangelands of Ladakh are characterised by low primary productivity (Chundawat & Rawat, 1994), and the wild herbivores are likely to compete with the burgeoning livestock on these impoverished rangelands (Mishra et al., 2002). Thus, given that the area supports a diverse wild ungulate assemblage of eight species (Fox et al., 1991b), and an increasing livestock population (Rawat and Adhikari, 2002), the nature of interaction between wildlife and livestock needs to be assessed. During this project, we primarily evaluated the influence of domestic sheep and goat grazing on the habitat use of Tibetan argali Ovis ammon hodgsoni in a prospective wildlife reserve in Ladakh.
|
|
|
Raghavan, B., Bhatnagar, Y., & Qureshi, Q. (2003). Interactions between livestock and Ladakh urial (Ovis vignei vignei); final report.
Abstract: The Ladakh urial (Ovis vignei vignei) is a highly endangered animal (IUCN Red List 2000) listed in the Appendix 1 of CITES and Schedule 1 of the Indian Wildlife Protection Act 1972. Its numbers had been reduced to a few hundred individuals in the 1960s and 70s through hunting for trophies and meat (Fox et al. 1991, Mallon 1983, Chundawat and Qureshi 1999, IUCN Red List 2000). However, with the protection bestowed by the IWPA 1972, and resultant decrease in hunting, the population seems to have shown a marginal increase to about 1000-1500 individuals in its range in Ladakh (Chundawat and Qureshi 1999, IUCN Red List 2000). Although the species had in the past, been able to coexist with the predominantly Buddhist society of Ladakh, the recent increase in the population of both humans and their livestock has placed immense pressures on its habitat (Shackleton 1997, Chundawat and Qureshi 1999, Raghavan and Bhatnagar 2003). This is especially important considering that the Ladakh urial habitat coincides with the areas of maximum human activity in terms of settlements, agriculture, pastoralism and development, in Ladakh (Fox et al. 1991, Chundawat and Qureshi 1999, Raghavan and Bhatnagar 2003). Increased developmental activities such as construction of roads, dams, and military bases in these areas have also increased the access to their habitat. This has consequently made the species more vulnerable to the threats of poaching and habitat destruction (Fox et al. 1991, Chundawat and Qureshi 1999, Raghavan and Bhatnagar 2002). Pressure from increased livestock grazing is one of the major threats faced by the species today (Shackleton 1997, Fox et al. 1991, Mallon 1983, IUCN Red List 2000 Chundawat and Qureshi 1999, Raghavan and Bhatnagar 2003). In the impoverished habitat provided by the Trans-Himalayas, there is great competition for the scarce resources between various animal species surviving here (Fox 1996, Mishra 2001). The presence of livestock intensifies this competition and can either force the species out of its niche (competitive exclusion) by displacing it from that area or resource, or lead to partitioning of resources between the species, spatially or temporally, for coexistence (Begon et al. 1986, Gause 1934).
|
|
|
Shafiq, M. M., & Abid, A. (1998). Status of large mammal species in Khunjerab National Park. Pakistan Journal of Forestry, 48(1-4), 91–96.
Abstract: Study on the current status of large mammals species population was carried out in Khunjerab National Park, Northern Areas. The observation recorded showed that the population of Tibetan Red fox (Vulpes vulpes montana), Snow leopard (Uncia uncia), and Wolf (Canis lupus) have, though a bit, increased but are still in the rank of “Endangered”. While the population of Himalyan Ibex (Cpara ibex sibirica) is increasing more rapidly and their status is now “Common” in the Park. The limited population of Marcopolo sheep (Ovis ammon polii), Tibetan wild Ass (Equus hemionus kiang) and Brown bear (Urus arctos) is still under threat, and comes them under “Critical Endangered” category.
|
|
|
ud Din, J. (2008). Assessing the Status of Snow Leopard in Torkhow Valley, District Chitral, Pakistan: Final Technical Report.
Abstract: This study was aimed at assessing the status of Snow leopard, its major prey base, and the extent of human-Snow leopard conflict and major threats to the wildlife in north Chitral (Torkhow valley) Pakistan. Snow leopard occurrence was conformed through sign transect surveys i.e. SLIMS. Based on the data collected the number of Snow leopards in this survey block (1022 Kmý) is estimated to be 2-3 animals. Comparing this estimate with the available data from other parts of the district the population of snow leopard in Chitral district was count to be 36 animals. Livestock depredation reports collected from the area reflect the existence of human-snow leopard conflict and 138 cases were recorded affecting 102 families (in a period of eight years, 2001-2008). Ungulates (Himalayan Ibex) rut season surveys were conducted in coordination with NWFP Wildlife department. A total of 429 animals were counted using direct count (point method) surveys. Other snow leopard prey species recorded include marmot, hare, and game birds. Signs of other carnivores i.e. wolf, jackal, and fox were also noticed. Major threats to the survival of wildlife especially snow leopard reckoned include retaliatory killing (Shooting, Poisoning), poaching, loss of natural prey, habitat degradation (over grazing, fodder and fuel wood collection), lack of awareness, and over population. GIS map of the study area was developed highlighting the area searched for Snow leopard and its prey species. Capacity of the Wildlife Department staff was built in conducting SLIMS and ungulate surveys through class room and on field training. Awareness regarding the importance of wildlife conservation was highlighted to the students, teachers and general community through lectures and distribution of resource materials developed by WWF-Pakistan.
|
|