|
Jumabay, K., Wegge, P., Mishra, C., Sharma, K. (2013). Large carnivores and low diversity of optimal prey: a comparison of the diets of snow leopards Panthera uncia and wolves Canis lupus in Sarychat-Ertash Reserve in Kyrgyzstan. Oryx, , 1–7.
Abstract: In the cold and arid mountains of Central Asia, where the diversity and abundance of wild ungulates
are generally low, resource partitioning among coexisting carnivores is probably less distinct than in prey-rich areas. Thus, similar-sized carnivores are likely to compete for food. We compared the summer diets of snow leopards Panthera uncia and wolves Canis lupus in Sarychat-Ertash Reserve in the Tien-Shan mountains of Kyrgyzstan, based on analysis of genetically confirmed scats. Abundances of
the principal prey species, argali Ovis ammon and Siberian ibex Capra sibirica, were estimated from field surveys. The diets consisted of few species, with high interspecific overlap (Pianka’s index50.91). Argali was the predominant prey, with .50% frequency of occurrence in both snow leopard and wolf scats. This was followed by Siberian ibex and marmots Marmota baibacina. Being largely unavailable, remains of livestock were not detected in any of the scats. In the snow leopard diet, proportions of argali and ibex were in
line with the relative availabilities of these animals in the Reserve. This was in contrast to the diet of wolf, where argali occurred according to availability and ibex was significantly underrepresented. The high diet overlap indicates that the two predators might compete for food when the diversity of profitable, large prey is low. Competition may be more intense in winter, when marmots are not available. Hunting of argali and ibex outside the Reserve may be unsustainable and therefore reduce their abundances over time. This will
affect both predators negatively and intensify competition for food. Reduction in ibex populations will directly affect the snow leopard, and the wolf is likely to be indirectly affected as a result of increased snow leopard predation of argali.
|
|
|
Lovari, S., Boesi, R., Minder, I., Mucci, N., Randi, E., Dematteis, A., and Ale, S. B. (2009). Restoring a keystone predator may endanger a prey species in a human-altered ecosystem: the return of the snow leopard to Sagarmatha National Park. Animal Conservation, 12, 559–570.
Abstract: Twenty-five years ago, the snow leopard Uncia uncia, an endangered large cat, was eliminated from what is now Sagarmatha National Park (SNP). Heavy hunting pressure depleted that area of most medium-large mammals, before it became a park. After three decades of protection, the cessation of hunting and the recovery of wild ungulate populations, snow leopards have recently returned (four individuals). We have documented the effects of the return of the snow leopard on the population of its main wild prey, the Himalayan tahr Hemitragus jemlahicus, a 'near-threatened' caprin. Signs of snow leopard presence were recorded and scats were collected along a fixed trail (130 km) to assess the presence and food habits of the snow leopard in the Park, from 2004 to 2006. Himalayan tahr, the staple of the diet, had a relative occurrence of 48% in summer and 37% in autumn, compared with the next most frequent prey, musk deer Moschus chrysogaster (summer: 20%; autumn: 15%) and cattle (summer: 15%; autumn: 27%). In early summer, the birth rate of tahr (young-to-female ratio: 0.8-0.9) was high. The decrease of this ratio to 0.1-0.2 in autumn implied that summer predation concentrated on young tahr, eventually altering the population by removing the kid cohort. Small populations of wild Caprinae, for example the Himalayan tahr population in SNP, are sensitive to stochastic predation events and may be led to almost local extinction. If predation on livestock keeps growing, together with the decrease of Himalayan tahr, retaliatory killing of snow leopards by local people may be expected, and the snow leopard could again be at risk of local extinction. Restoration of biodiversity through the return of a large predator has to be monitored carefully, especially in areas affected by humans, where the lack of important environmental components, for example key prey species, may make the return of a predator a challenging event.
Keywords: conservation, food habits, genetics, Hemitragus jemlahicus, Himalayan tahr, management, microsatellite, predation, presence, scat, scat analysis, snow leopard, Uncia uncia
|
|
|
Lovari, S., Minder, I., Ferretti, F., Mucci, N., Randi, E., Pellizzi, B. (2013). Common and snow leopards share prey, but not habitats: competition avoidance by large predators. Journal of Zoology, 291, 127–135.
Abstract: Resource exploitation and behavioural interference underlie competition among
carnivores. Competition is reduced by specializing on different prey and/or spatiotemporal
separation, usually leading to different food habits. We predicted that
two closely related species of large cats, the endangered snow leopard and the
near-threatened common leopard, living in sympatry, would coexist through
habitat separation and exploitation of different prey species. In central Himalaya,
we assessed (2006–2010) habitat and diet overlap between these carnivores. The
snow leopard used grassland and shrubland, whereas the common leopard
selected forest. Contrary to our prediction, snow leopard and common leopard
preyed upon similar wild (Himalayan tahr, musk deer) and domestic species (Bos
spp., dogs). Dietary overlap between snow leopard and common leopard was 69%
(yearly), 76% (colder months) and 60% (warmer months). Thus, habitat separation
should be the result of other factors, most likely avoidance of interspecific
aggression. Habitat separation may not always lead to the use of different prey.
Avoidance of interspecific aggression, rather than exploitation of different
resources, could allow the coexistence of potentially competing large predators.
|
|
|
Shrestha, R., & Wegge, P. (2006). Determining the composition of herbivore diets in the Trans-Himalayan rangelands: A comparison of field methods. Journal of Rangeland Ecology and Management, 59(5), 512–518.
Abstract: In late summer, in a semi-arid mountain range in Nepal, we compared 3 field methods for determining the botanical composition of herbivore diets. Data were collected from the same animals belonging to 1 herd of domestic yak (Bos grunniens) and 2 herds of mixed smallstock, consisting of domestic goats (Capra hircus) and sheep (Ovis aries). Bite count, feeding site examination, and microhistological analysis of feces gave different estimates of forage categories and plant species in both animal groups. Because yaks grazed in other vegetation communities when not observed for bite-counts and feeding signs, the results from the latter methods could not be compared directly with that from fecal analysis. In smallstock, feeding site examination gave higher estimates of graminoids and lower estimates of shrubs than the other 2 methods, probably because all feeding signs on shrubs were not detected. Bite-counts and fecal analysis gave comparable results, except that forbs were underestimated by fecal analysis, presumably due to their more complete digestion. Owing to the difficulty in collecting samples that are representative of the entire grazing period and the problem of recording feeding signs correctly, both feeding site examination and bite-counts are unsuitable methods for studying the food habits of free ranging domestic and wild herbivores. Microhistological analysis of feces appears to be the most appropriate method, but correction factors are needed to adjust for differential digestion. The systematic use of photomicrographs improves the speed and accuracy of the fecal analysis.
|
|
|
Shrestha, R., & Wegge, P. (2008). Wild sheep and livestock in Nepal Trans-Himalaya: coexistence or competition? Environmental Conservation, 32(2), 125–136.
Abstract: Excessive grazing by livestock is claimed to displace wild ungulates in the Trans-Himalaya. This study compares the seasonal diets and habitat use of sympatric wild naur Pseudois nayaur and domestic goat Capra hircus, sheep Ovis aries and free-ranging yak Bos grunniens in north Nepal and analyses their overlap both within and across seasons. Alpinemeadow and the legumes Oxytropis and Chesneya were critical resources for all animal groups. High overlap occurred cross-seasonally when smallstock (sheep and goats) in summer used the spring and autumn ranges of naur. Relatively high total ungulate biomass (3028 kg km-2) and low recruitment of naur (56 young per 100 adult females in autumn) suggested interspecific competition. The spatio-temporal heterogeneity in composition and phenology of food plants across the steep gradient of altitude, together with rotational grazing, appears to indirectly facilitate coexistence of naur and smallstock. However, owing to high crossseasonal (inter-seasonal) overlaps, competition is likely to occur between these two groups at high stocking densities. Within seasons, naur overlapped more with free-ranging yak than with smallstock. As their habitat use and diets were most similar in winter, when both fed extensively on the same species of shrubs, naur was most likely to compete with yak during that season.
|
|