|
Gripenberg, U. (1982). Comparison of chromosome banding patterns in the snow leopard (Panthera uncial) and in other felids. International Pedigree Book of Snow Leopards, (3).
|
|
|
Jackson, R., Roe, J., Wangchuk, R., & Hunter, D. (2005). Camera-Trapping of Snow Leopards. Cat News, 42(Spring), 19–21.
Abstract: Solitary felids like tigers and snow leopards are notoriously difficult to enumerate, and indirect techniques like pugmark surveys often produce ambiguous information that is difficult to interpret because many factors influence marking behavior and frequency (Ahlborn & Jackson 1988). Considering the snow leopard's rugged habitat, it is not surprising then that information on its current status and occupied range is very limited. We adapted the camera-trapping techniques pioneered by Ullas Karanth and his associates for counting Bengal tigers to the census taking of snow leopards in the Rumbak watershed of the India's Hemis High Altitude National Park (HNP), located in Ladakh near Leh (76ø 50' to 77ø 45' East; 33ø 15' to 34ø 20'North).
|
|
|
Kazensky, C. A., Munson, L., & Seal, U. S. (1998). The effects of melengestrol acetate on the ovaries of captive wild felids. Journal-of-Zoo-and-Wildlife-Medicine, 29(1), 1–5.
Abstract: Melengestrol acetate (MGA) is the most widely used contraceptive in zoo felids, but the mechanism of contraception and the pathologic effects have not been investigated. For this study, the effects of MGA on folliculogenesis were assessed, and the association of MGA with ovarian lesions was evaluated. Comparisons were made among the histopathologic findings in the ovaries from 88 captive wild felids (representing 15 species) divided into three groups: 37 currently contracepted with MGA, eight previously exposed to MGA, and 43 never contracepted. Ninety-one percent of the felids evaluated had tertiary follicles, and no differences were noted between contracepted and uncontracepted cats. Some MGA-contracepted cats also had corpora lutea indicating recent ovulation. These results indicate that folliculogenesis is not suppressed by current doses of MGA and ovulation occurred in some cats. Therefore, the contraceptive actions of MGA do not occur by suppressing folliculogenesis, and MGA-contracepted felids likely have endogenous estrogens that may confound progestin effects on the uterus. Cystic rete ovarii was the most common pathologic finding, but they were not more prevalent in MGA-contracepted cats. These findings indicate that MGA is not associated with ovarian disease, including ovarian cancer, in contrast to the uterine lesions noted in MGA-treated cats.
|
|
|
Krofel, M., Oliveira, T., Rovero, F., Groff, C., Augugliaro, C., Oberosler, V., Allen, M. L. (2025). Communication behavior of the snow leopard (Panthera uncia): understanding marking-behavior patterns to optimize camera- trapping studies. Behavioral Ecology and Sociobiology, 79(32), 1–13.
Abstract: Many carnivores rely on marking behavior for intraspecific communication with potential mates and competitors, using scent and visual markings to advertise their use of a territory and allow potential mates to assess their quality. However, obtaining data on communication behaviors of rare and elusive animals can be challenging. To better understand marking behavior of snow leopard (Panthera uncia), we combined camera-trapping, snow-tracking and transect counts of scrapes in the Altai Mountains, Mongolia, and measured frequencies of communication behaviors in both space and time. Next, we explored if this information could be used to improve the efficiency of snow leopard population monitoring through camera-trapping. Using the combination of all three methods, we detected seven communication behaviors. Most visits at marking sites began with sniffing (recorded at 56.4% visits) before progressing to other behaviors. Urine spraying
(17.7% of visits) and scraping (16.8%) were exhibited at significantly more visits than other communication behaviors (flehmen, head/body rubbing, fecal deposition, claw marking). According to the snow-tracking data conducted in optimal habitats, scraping was the most frequent marking behavior with 12.8 scrapes/km, followed by urine marking with 10.5 marks/km. Along 32 transects, we recorded a mean of 8.0 cumulative scrapes/km, with highest marking rates recorded in gorges, which we recommend as prime habitats for deploying camera-traps. Finally, our results suggest that the number of scrapes observed at potential camera-trapping sites represents a good predictor of snow leopard visitation rate. Therefore, this parameter can be used when choosing camera-trapping locations to increase the efficiency of monitoring programs.
|
|
|
Marma, B. B., & Yunchis, V. V. (1968). Observations on the breeding, management and physiology of Snow leopards (Panthera u. uncia) at Kaunas Zoo from 1962 to 1967. In C. Jarvis, & R. Biegler (Eds.), Canids and Felids in Captivity (pp. 66–73). Zoological Society of London.
|
|
|
Nardelli, F. (1982). Keeping and breeding snow leopards at the Rare Felids Increasing Centre, Nettuno, Italy. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards, Vol. 3 (Vol. 3, pp. 63–66). Helsinki: Helsinki Zoo.
|
|
|
Oberosler, V., Tenan, S., Groff, C., Krofel, M., Augugliaro, C., Munkhtsog, B., Rovero, F. (2021). First spatially‐explicit density estimate for a snow leopard population in the Altai Mountains. Biodiversity and Conservation, , 15.
Abstract: The snow leopard Panthera uncia is an elusive and globally-threatened apex predator occurring in the mountain ranges of central Asia. As with other large carnivores, gaps in data on its distribution and abundance still persist. Moreover, available density estimates are often based on inadequate sampling designs or analytical approaches. Here, we used camera trapping across a vast mountainous area (area of the sampling frame 850 km2; analysed habitat extent 2600 km2) and spatially-explicit capture-recapture (SECR) models to provide, to our knowledge, the first robust snow leopard population density estimate for the Altai Mountains. This region is considered one of the most important conservation areas for snow leopards, representing a vast portion of suitable habitat and a key ecological corridor. We also provide estimates of the scale parameter (σ) that reflects ranging behaviour (activity range) and baseline encounter probability, and investigated potential drivers of density and related parameters by assessing their associations with anthropogenic and environmental factors. Sampling yielded 9729 images of snow leopards corresponding to 224 independent detections that belonged to a minimum of 23 identified adult individuals. SECR analysis resulted in an overall density of 1.31 individuals/100 km2 (1.15%–1.50 95% CI), which was positively correlated with terrain slope. This estimate falls within the mid-values of the range of density estimates for the species globally. We estimated significantly different activity range size for females and males (79 and 329 km2, respectively). Base- line encounter probability was negatively associated with anthropogenic activity. Our study contributes to on-going efforts to produce robust global estimates of population abundance for this top carnivore.
|
|
|
Swanson, W. F. (2003). Research in Nondomestic Species: Experiences in Reproductive Physiology Research for Conservation of Endangered Felids (Vol. 4).
Abstract: Tremendous strides have been made in recent years to broaden our understanding of reproductive processes in nondomestic felid species and further our capacity to use this basic knowledge to control and manipulate reproduction of endangered cats. Much of that progress has culminated from detailed scientific studies conducted in nontraditional laboratory settings, frequently at collaborating zoological parks but also under more primitive conditions, including in the field. A mobile laboratory approach is described, which incorporates a diverse array of disciplines and research techniques. This approach has been extremely useful, especially for conducting gamete characterization and function studies as well as reproductive surveys, and for facilitating the development of assisted reproductive technology. With continuing advances in assisted reproduction in rare felids, more procedures are being conducted primarily as service-related activities, targeted to increase effectiveness of species propagation and population management. It can be a challenge for both investigators and institutional animal care and use committees (IACUCs) to differentiate these service-based procedures from traditional research studies (that require IACUC oversight). For research with rare cat species, multi-institutional collaboration frequently is necessary to gain access to scientifically meaningful numbers of study subjects. Similarly, for service-based efforts, the ability to perform reproductive procedures across institutions under nonstandard laboratory conditions is critical to applying reproductive sciences for managing and preserving threatened cat populations. Reproductive sciences can most effectively assist population management programs (e.g., Species Survival Plans) in addressing conservation priorities if these research and service- related procedures can be conducted “on the road” at distant national and international locales. This mobile laboratory approach has applications beyond endangered species research, notably for other scientific fields (e.g., studies of hereditary disease in domestic cat models) in which bringing the laboratory to the subject is of value.
|
|