|
Brown, J. L., Wasser, S. K., Wildt, D. E., & Graham, L. H. (1994). Steroid Metabolism and the Effectiveness of Fecal Assays for Assessing Reproductive Status in Felids. Biology of Reproduction, 50(suppl 1), 185.
|
|
|
Burgener, N., Gusset, M., & Schmid, H. (2008). Frustrated appetitive foraging behavior, stereotypic pacing, and fecal glucocorticoid levels in snow leopards (Uncia uncia) in the Zurich Zoo (Vol. 11).
Abstract: This study hypothesized that permanently frustrated, appetitive-foraging behavior caused the stereotypic pacing regularly observed in captive carnivores. Using 2 adult female snow leopards (Uncia uncia), solitarily housed in the Zurich Zoo, the study tested this hypothesis experimentally with a novel feeding method: electronically controlled, time-regulated feeding boxes. The expected result of employing this active foraging device as a successful coping strategy was reduced behavioral and physiological measures of stress, compared with a control-feeding regime without feeding boxes. The study assessed this through behavioral observations and by evaluating glucocorticoid levels noninvasively from feces. Results indicated that the 2 snow leopards did not perform successful coping behavior through exercising active foraging behavior or through displaying the stereotypic pacing. The data support a possible explanation: The box-feeding method did not provide the 2 snow leopards with the external stimuli to satisfy their appetitive behavioral needs. Moreover, numerous other factors not necessarily or exclusively related to appetitive behavior could have caused and influenced the stereotypic pacing.
|
|
|
Fix, A. S., Riordan, D. P., Hill, H. T., Gill, M. A., & Evans, M. B. (1989). Feline panleukopena virus and subsequent canine-distemper virus infection in two snow leopards (Panthera uncia). Journal of Zoo and Wildlife Medicine, 20(3), 273–281.
Abstract: Two adult snow leopards (Panthera uncia), male and female, both with vaccinations current, became infected with feline panleukopenia virus (FPV) at the Blank Park Zoo, Des Moines, Iowa, in late 1988. Clinical signs included weakness, hemorrhagic feces, fever, seizures, and nasal discharge. Blood analysis revealed severe lymphopenia and mild anemia. A positive enzyme-linked immunosorbent assay (ELISA) test for FPV on fecal contents from the male leopard confirmed the diagnosis. In spite of intensive therapy, both animals died. Necropsy of the female, which survived for 1 wk after onset of signs, revealed intestinal crypt necrosis, pulmonary consolidation, necrotizing laryngitis, and diffuse lymphoid depletion. The male leopard, which lived 3 wk after onset of illness, had similar enteric and lymphoid lesions. In addition, there was a severe interstitial pneumonia, with syncytial cells containing eosinophilic intracytoplasmic inclusion bodies. Ultrastructural characteristics of these inclusions featured tubular structures consistent with a paramyxovirus. Although repeated virus isolation attempts from the affected lung were negative, polyclonal and monoclonal fluorescent antibody tests were strongly positive for canine distemper virus (CDV). Frozen paired sera from each leopard demonstrated very high acute and convalescing titers to FPV; both animals also seroconverted to CDV, with titers in the male leopard higher than those in the female. Additional tests for toxoplasmosis, feline infectious peritonitis, feline rhinotracheitis, feline calicivirus, feline leukemia, canine parainfluenza, and bovine respiratory syncytial virus were all negative. The neurologic signs present in these leopards remained unexplained, but may have been attributable to CDV infection. A feral cat trapped on zoo property had feces positive for FPV by ELISA. Although the specific contributions of FPV and CDV toward the development of this case are unknown, it is likely that initial FPV-induced immunosuppression allowed the subsequent development of CDV in these snow leopards. The likelihood that initial FPV infection came from feral cats underscores the importance of feral animal control on zoo premises.
|
|
|
Graham, L. H., Goodrowe, K. L., Raeside, J. I., & Liptrap, R. M. (1995). Non-invasive monitoring of ovarian function in several felid species by measurement of fecal estradiol-17-beta and progestins. Zoo Biology, 14(3), 223–237.
Abstract: An extraction and assay procedure to measure fecal estradiol-17-beta and progestin concentrations in several cat species was developed and validated for use for noninvasive monitoring of ovarian function. Fecal samples were collected over a range of 3-20 months from female tigers (three), lions (three), snow leopards (three), cheetahs (two), caracals (two), and domestic cats (five). Samples were extracted with 90% methanol, lipids removed with petroleum ether, and the estradiol and progestins in the methanol measured by radioimmunoassay (RIA). High Performance Liquid Chromatography (HPLC) fractionation and subsequent RIA of the fractions indicated that the estradiol-17-beta antiserum cross-reacted primarily with estradiol-17-beta in the feces of lions and tigers and was assumed to be specific for estradiol-17-beta in the feces of other species as well. However, there were several immunoreactive compounds, presumably progesterone metabolites, excreted in the feces which varied both quantitatively and qualitatively among species. The behavior of tigers, lions, cheetahs, and caracals was visually monitored during the collection period and frequency of sexual behaviors was positively correlated with increases in fecal estradiol in all species observed. The mean fecal estradiol-17-beta peaks were as follows: tigers, 128.0 +- 13.1; lions, 186.0 +- 14.8; snow leopards, 136.7 +- 15.9; cheetahs, 140.9 +- 9.0; caracals, 24.5 +- 4.0; and domestic cats 158.9 +- 19.3 ng/gm. Fecal progestin concentrations rose significantly (P lt 0,001) only after breeding or during pregnancy and were as follows: tigers, 5.6 +- 0.6; lions, 1.9 +- 0.1; cheetahs, 8.4 +- 1.1; and caracals, 2.4 +- 0.4 mu-g/gm. Fecal progestins were elevated for one-half to two-thirds of the gestation length during presumed pseudopregnancy but remained elevated throughout successful pregnancies. These results suggest that ovarian function can be monitored noninvasively in the family Felidae by the measurement of fecal estradiol-17-beta and progestin concentrations.
|
|
|
Jackson, R. (2000). Linking Snow Leopard Conservation and People-Wildlife Conflict Resolution, Summary of a multi-country project aimed at developing grass-roots measures to protect the endangered snow leopard from herder retribution. Cat News, 33, 12–15.
|
|
|
McCarthy, T., Murray, K., Sharma, K., & Johansson, O. (2010). Preliminary results of a long-term study of snow leopards in South Gobi, Mongolia. Cat News, Autumn(53), 15–19.
Abstract: Snow leopards Panthera uncia are under threat across their range and require urgent conservation actions based on sound science. However, their remote habitat and cryptic nature make them inherently difficult to study and past attempts have provided insufficient information upon which to base effective conservation. Further, there has been no statistically-reliable and cost-effective method available to monitor snow leopard populations, focus conservation effort on key populations, or assess conservation impacts. To address these multiple information needs, Panthera, Snow Leopard Trust, and Snow Leopard Conservation Fund, launched an ambitious long-term study in Mongolia’s South Gobi province in 2008. To date, 10 snow leo-pards have been fitted with GPS-satellite collars to provide information on basic snow leopard ecology. Using 2,443 locations we calculated MCP home ranges of 150 – 938 km2, with substantial overlap between individuals. Exploratory movements outside typical snow leopard habitat have been observed. Trials of camera trapping, fecal genetics, and occupancy modeling, have been completed. Each method ex-hibits promise, and limitations, as potential monitoring tools for this elusive species.
Keywords: snow leopard, Mongolia, monitor, population, Panthera, Snow Leopard Trust, Snow Leopard Conservation Fund, South Gobi, ecology, radio collar, GPS-satellite collar, home range, camera trapping, fecal genetics, occupancy modeling
|
|
|
Oli, M. K. (1994). Snow leopards and local human population in a protected area: a case study from the Nepalese Himalaya. In J.L.Fox, & D.Jizeng (Eds.), (pp. 51–64). Usa: International Snow Leopard Trust, Seattle, Washington.
|
|
|
Shrestha, R., & Wegge, P. (2006). Determining the composition of herbivore diets in the Trans-Himalayan rangelands: A comparison of field methods. Journal of Rangeland Ecology and Management, 59(5), 512–518.
Abstract: In late summer, in a semi-arid mountain range in Nepal, we compared 3 field methods for determining the botanical composition of herbivore diets. Data were collected from the same animals belonging to 1 herd of domestic yak (Bos grunniens) and 2 herds of mixed smallstock, consisting of domestic goats (Capra hircus) and sheep (Ovis aries). Bite count, feeding site examination, and microhistological analysis of feces gave different estimates of forage categories and plant species in both animal groups. Because yaks grazed in other vegetation communities when not observed for bite-counts and feeding signs, the results from the latter methods could not be compared directly with that from fecal analysis. In smallstock, feeding site examination gave higher estimates of graminoids and lower estimates of shrubs than the other 2 methods, probably because all feeding signs on shrubs were not detected. Bite-counts and fecal analysis gave comparable results, except that forbs were underestimated by fecal analysis, presumably due to their more complete digestion. Owing to the difficulty in collecting samples that are representative of the entire grazing period and the problem of recording feeding signs correctly, both feeding site examination and bite-counts are unsuitable methods for studying the food habits of free ranging domestic and wild herbivores. Microhistological analysis of feces appears to be the most appropriate method, but correction factors are needed to adjust for differential digestion. The systematic use of photomicrographs improves the speed and accuracy of the fecal analysis.
|
|
|
Shrestha, R., Wegge, P., & Koirala, R. A. (2005). Summer diets of wild and domestic ungulates in Nepal Himalaya. Journal of Zoology, 266, 111–119.
Abstract: The selection of summer forage by three sympatric ungulates in the Damodar Kunda region of upper Mustang in
north Nepal was studied to assess the extent of food overlap between them. To compare their diets, a microhistological technique of faecal analysis was used, adjusted for inherent biases by comparing it with bite-count data obtained in domestic goats. Tibetan argali Ovis ammon hodgsoni, naur (blue sheep or bharal) Pseudois nayaur and domestic goat Capra hircus consumed mostly forbs, graminoids and browse, respectively. The proportions of food items in their diets were significantly different both at the plant species (P<0.02) and at the forage category level (P<0.001). Except for sharing three common plants (Agrostis sp., Stipa sp. and Potentilla fruticosa), dietary overlap at the species level was quite low. At the forage category level, naur and domestic goat overlapped more than the other ungulate pairs. Although all three species were opportunistic, mixed feeders, argali was a more selective forb specialist grazer than the other two ungulates. Owing to some spatial separation and little dietary overlap, interspecific competition for summer forage was low. If animal densities increase, however, goats are expected to compete more with naur than with argali because of their more similar diets. Owing to differences in forage selection by argali and naur throughout their large geographical ranges, reflecting adaptations to local ecological conditions, inferences regarding forage competition between domestic livestock and these two wild caprins need to be made from local, site-specific studies, rather than from general diet comparisons.
|
|
|
Thapa, K., Schmitt, N., Pradhan, N. M. B., Acharya, H. R., Rayamajhi, S. (2021). No silver bullet? Snow leopard prey selection in Mt. Kangchenjunga, Nepal. Ecology and Evolution, , 1–13.
Abstract: In this study, we investigated the impact of domestic and wild prey availability on snow leopard prey preference in the Kangchenjunga Conservation Area of eastern Nepal-a region where small domestic livestock are absent and small wild ungulate prey are present. We took a comprehensive approach that combined fecal genetic sampling, macro- and microscopic analyses of snow leopard diets, and direct observation of blue sheep and livestock in the KCA. Out of the collected 88 putative snow leopard scat samples from 140 transects (290km) in 27 (4x4km2) sampling grid cells, 73 (83%) were confirmed to be from snow leopard. The genetic analysis accounted for 19 individual snow leopards (10 males and 9 females), with a mean population size estimate of 24 (95% CI: 19-29) and an average density of 3.9 snow leopards/100km2 within 609km2. The total available prey biomass of blue sheep and yak was estimated at 355,236 kg (505 kg yak/km2 and 78kg blue sheep/km2). From the available prey biomass, we estimated snow leopards consumed 7% annually, which comprised wild prey (49%), domestic livestock (45%). and 6% unidentified items. the estimated 47,736 kg blue sheep biomass gives a snow leopard-to-blue sheep ratio of 1:59 on a weight basis. The high preference of snow leopard to domestic livestock appears to be influenced by a much smaller available biomass of wild prey then in other regions of Nepal (e.g., 78kg/km2 in the KCA compared with a range of 200-300 kg/km2 in other regions of Nepal?. Along with livestock insurance scheme improvement, there needs to be a focus on improved livestock guarding, predator-proof corrals as well as engaging and educating local people to be citizen scientists on the importance of snow leopard conservation, involving them in long-term monitoring programs and promotion of ecotourism.
|
|