|
Feng, X., Peng, Q., Chen, Y., Li, W. (2022). A Case Study of the Snow Leopard in Sanjiangyuan National Park Boundaries regarding Park Boundary Divergence. Land, 11(813), 1–15.
Abstract: This paper uses remote sensing data from the Sanjiangyuan National Park (SNP) to explore the divergence between the boundaries of national parks and the distribution of natural habitats. Results are used to argue that these discrepancies evolve along with the potential impact of global warming. Using the example of the habitat change of snow leopards and the conflicts between local people and snow leopards, we reflect on the consequences of this divergence. Results show that divergence between the political boundaries and natural habitats as well as the consequent influence on the living conditions of local people are strikingly visible, and the effects of global warming on such conflicts are apparent. The authors conclude that both notions of ‘political boundaries’ and ‘natural habitats’ are expected to come together as the SNP region is spatially configured, while ‘global warming’ seems to be relevant as an essential reference when delimiting the region in the future. Finally, the proposal for the establishment of cooperative conservation areas is presented,
emphasizing the role of cooperative governance in/around national parks.
|
|
|
Johnson, W. E., Eizirik, E., Pecon-Slattery, J., Murphy, W. J., Antunes, A., Teeling, E., et al. (2006). The Late Miocene Radiation of Modern Felidae: A Genetic Assessment (Vol. 311).
Abstract: Modern felid species descend from relatively recent (G11 million years ago) divergence and speciation events that produced successful predatory carnivores worldwide but that have confounded taxonomic classifications. A highly resolved molecular phylogeny with divergence dates for all living cat species, derived from autosomal, X-linked, Y-linked, and mitochondrial gene segments (22,789 base pairs) and 16 fossil calibrations define eight principal lineages produced through at least 10 intercontinental migrations facilitated by sea-level fluctuations. A ghost lineage analysis indicates that available felid fossils underestimate (i.e., unrepresented basal branch length) first occurrence by an average of 76%, revealing a low representation of felid lineages in paleontological remains. The phylogenetic performance of distinct gene classes showed that Y-chromosome segments are appreciably more informative than mitochondrial DNA, X-linked, or autosomal genes in resolving the rapid Felidae species radiation.
|
|
|
Olaf, R. P., Edmonds, B., Gittleman, J., & Purvis, A. (1999). Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biological Reviews of the Cambridge Philosophical Society, 74, 143–175.
Abstract: One way to build larger, more comprehensive phylogenies is to combine the vast amount of phylogenetic information already available. We review the two main strategies for accomplishing this (combining raw data versus combining trees), but employ a relatively new variant of the latter: supertree construction. The utility of one supertree technique, matrix representation using parsimony analysis (MRP), is demonstrated by deriving a complete phylogeny for all 271 extant species of the Carnivora from 177 literature sources. Beyond providing a `consensus' estimate of carnivore phylogeny, the tree also indicates taxa for which the relationships remain controversial (e.g. the red panda; within canids, felids, and hyaenids) or have not been studied in any great detail (e.g. herpestids, viverrids, and intrageneric relationships in the procyonids). Times of divergence throughout the tree were also estimated from 74 literature sources based on both fossil and molecular data. We use the phylogeny to show that some lineages within the Mustelinae and Canidae contain significantly more species than expected for their age, illustrating the tree's utility for studies of macroevolution. It will also provide a useful foundation for comparative and conservational studies involving the carnivores.
(Received June 2 1998)(Revised November 27 1998)(Accepted December 16 1998)
|
|
|
Warren E.Johnson, E. E. (2006). The Late Miocene Radiation of Modern Felidae: A Genetic Assessment (Stephen J.O'Brien Emma Teeling Agostinho Antunes W. J. M. Jill Pecon-Slattery, Ed.) (Vol. 311). Washington D.C.
Abstract: Modern felid species descend from relatively recent (<11 million years ago) divergence and
speciation events that produced successful predatory carnivores worldwide but that have
confounded taxonomic classifications. A highly resolved molecular phylogeny with divergence dates
for all living cat species, derived from autosomal, X-linked, Y-linked, and mitochondrial gene
segments (22,789 base pairs) and 16 fossil calibrations define eight principal lineages produced
through at least 10 intercontinental migrations facilitated by sea-level fluctuations. A ghost lineage
analysis indicates that available felid fossils underestimate (i.e., unrepresented basal branch
length) first occurrence by an average of 76%, revealing a low representation of felid lineages
in paleontological remains. The phylogenetic performance of distinct gene classes showed that
Y-chromosome segments are appreciably more informative than mitochondrial DNA, X-linked,
or autosomal genes in resolving the rapid Felidae species radiation.
|
|