|
Lu, Q., Xiao, L., Cheng, C., Lu, Z., Zhao, J., Yao, M. (2021). Snow Leopard Dietary Preferences and Livestock Predation Revealed by Fecal DNA Metabarcoding: No Evidence for Apparent Competition Between Wild and Domestic Prey. Frontiers in Ecology and Evolution, 9(783546), 1–14.
Abstract: Accurate assessments of the patterns and drivers of livestock depredation by wild carnivores are vital for designing effective mitigation strategies to reduce human-wildlife conflict. Snow leopard’s (Panthera uncia) range extensively overlaps pastoralist land- use and livestock predation there is widely reported, but the ecological determinants of livestock consumption by snow leopards remain obscure. We investigated snow leopard dietary habits at seven sites across the Sanjiangyuan region of the Qinghai– Tibetan Plateau (QTP), an area central to the species’ global range. Snow leopard abundance, wild prey composition, and livestock density varied among those sites, thus allowing us to test the effects of various factors on snow leopard diet and livestock predation. Using DNA metabarcoding, we obtained highly resolved dietary data from 351 genetically verified snow leopard fecal samples. We then analyzed the prey preferences of snow leopards and examined ecological factors related to their livestock consumption. Across the sites, snow leopard prey was composed mainly of wild ungulates (mean = 81.5% of dietary sequences), particularly bharal (Pseudois nayaur), and supplemented with livestock (7.62%) and smaller mammals (marmots, pikas, mice; 10.7%). Snow leopards showed a strong preference for bharal, relative to livestock, based on their densities. Interestingly, both proportional and total livestock consumption by snow leopards increased linearly with local livestock biomass, but not with livestock density. That, together with a slight negative relationship with bharal density, supports apparent facilitation between wild and domestic prey. We also found a significant positive correlation between population densities of snow leopard and bharal, yet those densities showed slight negative relationships with livestock density. Our results highlight the importance of sufficient wild ungulate abundance to the conservation of viable snow leopard populations. Additionally, livestock protection is critically needed to reduce losses to snow leopard depredation, especially where local livestock abundances are high.
|
|
|
Shrestha, A., Thapa, K., Subba, S. A., Dhakal, M., Devkota, B. P., Thapa, G. J., Shrestha, S., Malla, S., Thapa, K. (2019). Cats, canines, and coexistence: dietary differentiation between the sympatric Snow Leopard and Grey Wolf in the western landscape of Nepal Himalaya. Journal of Threatened Taxa, 11(7), 13815–13821.
Abstract: Understanding the dietary habits of sympatric apex carnivores advances our knowledge of ecological processes and aids their conservation. We compared the diets of the sympatric Snow Leopard Panthera uncia and Grey Wolf Canis lupus using standard micro-histological analyses of scats collected from the western complex of Nepal Himalaya. Our study revealed one of the highest recorded contributions of livestock to the diet of top predators (55% for Grey Wolf and 39% for Snow Leopard) and high dietary overlap (0.82) indicating potential exploitative or interference competition. Their diet composition, however, varied significantly based on their consumption of wild and domestic prey. Limitation in data precludes predicting direction and outcome of inter-specific interactions between these predators. Our findings suggest a high rate of negative interaction with humans in the region and plausibly retaliatory killings of these imperilled predators. To ensure the sustained survival of these two apex carnivores, conservation measures should enhance populations of their wild prey species while reducing livestock losses of the local community through preventive and mitigative interventions.
|
|
|
Slifka, K., Stacewicz-Sapuntzakis, S. M., Bowen, P., & Crissey, S. (1999). A Survey of Serum and Dietary Carotenoids in Captive Wild Animals. The Journal of Nutrition, 129, 380–390.
Abstract: Accumulation of carotenoids varies greatly among animal species and is not fully characterized.
Circulating carotenoid concentration data in captive wild animals are limited and may be useful for their management.
Serum carotenoid concentrations and dietary intakes were surveyed and the extent of accumulation
categorized for 76 species of captive wild animals at Brookfield Zoo. Blood samples were obtained opportunistically
from 275 individual animals immobilized for a variety of reasons; serum was analyzed for a- and b-carotene,
lutein 1 zeaxanthin, lycopene, b-cryptoxanthin and canthaxanthin. Total carotenoid content of diets was calculated
from tables and chemical analyses of commonly consumed dietary components. Diets were categorized as
low, moderate or high in carotenoid content as were total serum carotenoid concentrations. Animals were
classified as unknown, high, moderate or low (non-) accumulators of dietary cartenoids. Nonaccumulators had total
serum carotenoid concentrations of 0-101 nmol/L, whereas accumulators had concentrations that ranged widely,
from 225 to 35,351 nmol/L. Primates were uniquely distinguished by the widest range of type and concentration
of carotenoids in their sera. Most were classified as high to moderate accumulators. Felids had high accumulation
of b-carotene regardless of dietary intake, whereas a wide range of exotic birds accumulated only the xanthophylls,
lutein 1 zeaxanthin, canthaxanthin or cryptoxanthin. The exotic ungulates, with the exception of the bovids, had
negligible or nondetectable carotenoid serum concentrations despite moderate intakes. Bovids accumulated only
b-carotene despite moderately high lutein 1 zeaxanthin intakes. Wild captive species demonstrated a wide variety
of carotenoid accumulation patterns, which could be exploited to answer remaining questions concerning carotenoid
metabolism and function.
|
|