|
Anonymous. (1999). Livestock Predation Control Workshop.
|
|
|
Chen, P., Gao, Y., Lee, A. T. L., Cering, L., Shi, K., Clark, S. G. (2016). Human–carnivore coexistence in Qomolangma (Mt. Everest) Nature Reserve, China: Patterns and compensation. Biological Conservation, (197), 18–26.
Abstract: Livestock depredation by large carnivores is frequently reported in Qomolangma (Mt. Everest) National Nature Reserve, Tibet Autonomous Region of China. Seeking to minimize conflicts, we assessed depredation patterns and ways to upgrade the compensation program. We gathered 9193 conflict records over 2011–2013 to determine the extent and tempo-spatial patterns of the depredation.Weinterviewed 22 local officials and 94 residents to learn their views on depredations and to assess the adequacy of compensation. Data showed that wolves (Canis lupus), lynx (Lynx lynx), and snowleopards (Panthera uncia)were themajor livestock predators. Total livestock
loss accounted for 1.2% of the entire stockholding (n=846,707) in the region. Wolves and lynx tended to take sheep and goats,whereas snowleopards favored yaks and cattle in relation to their proportional abundance. Predation mostly occurred in March through July. Livestock depredation by all predators when combined was best explained by terrain ruggedness and density of small- and large-bodied livestock. Temporal and spatial predation patterns variedamong carnivores.Most respondents (74%) attributed depredation causes to an increase in carnivore abundance. Only 7% blamed lax livestock herding practice for predation losses. Five percent said that
predation was the result of livestock population increases, while 11% had no idea. The compensation scheme was found to be flawed in all aspects—predation verification, application procedure, compensation standard, operational resource allocation, making payment, and other problems. To enhance management for human–carnivore coexistence, we recommend a problem-oriented, integrated, adaptive approach that targets the complex social context of the conflict and addresses the interconnected functions of decision-making process.
|
|
|
Fox, J. L. (1995). Snow Leopard Conservation and Related Developements in Ladakh (Vol. xiii). Seattle: Islt.
|
|
|
Hussain, I. (1999). Conserving Biodiversity through Institutional Diversity: Concept Paper.
|
|
|
Jackson, R. (2000). Linking Snow Leopard Conservation and People-Wildlife Conflict Resolution, Summary of a multi-country project aimed at developing grass-roots measures to protect the endangered snow leopard from herder retribution. Cat News, 33, 12–15.
|
|
|
Jackson, R. (2000). The Snow Leopard Conservancy, Dedicated to demonstrating innovative, grassroots measures that lead local shepherds to become better stewards of the endangered snow leopard, its prey and habitat.
|
|
|
Maheshwari, A., Midha, N., Chehrukupalli, A. (2014). Participatory Rural Appraisal and Compensation Intervention: Challenges and Protocols While Managing Large Carnivore–Human Conflict. Human Dimensions of Wildlife: An International Journal, 19, 62–71.
Abstract: When large carnivores cause socioeconomic losses in a community, conflict increases,
retaliatory killing of the carnivore can occur, and conservation efforts are undermined.
We focused on Participatory Rural Appraisal (PRA) and economic compensation
schemes as approaches for managing conflict. PRA is a tool for collecting data on
the large carnivore–human conflict and economic compensation schemes for those
affected negatively by carnivore presence. We reviewed published papers and reports
on large carnivore–human conflicts, PRA, and compensation schemes. This article
details insights into common pitfalls, key lessons learned, possible solutions including
new approaches for compensation and protocols to be followed while managing large
carnivore–human conflict. We hope to contribute to a meaningful dialogue between
locals, managers, and researchers and help in effective implementation of conservation
programs to mitigate large carnivore–human conflict around the protected areas.
|
|
|
Pathak, A., Lamichhane, S., Dhakal, M., Karki, A., Dhakal, B. D., Chetri, M., Mintz, J., Pun, P., Neupane, P., Dahal, T. P., Rayamajhi, T., Paudel, P., Thapa, A., Regmi, P. R., Thami, S., Thapa, G., Khanal, S., Lama, S., Karki, J., Khanal, S., Ferdin, A. E. J. (2024). Human-wildlife conflict at high altitude: A case from Gaurishankar conservation area, Nepal. Ecology and Evolution, 14(e11685), 1–9.
Abstract: Human–wildlife conflict studies of high-altitude areas are rare due to budget constraints and the challenging nature of research in these remote environments. This study investigates the prevalence and increasing trend of human–wildlife conflict (HWC) in the mountainous Gaurishankar Conservation Area (GCA) of Nepal, with a specific focus on leopard (Panthera pardus) and Himalayan black bear (Ursus thibetanus laniger). The study analyzes a decade of HWC reports and identifies goats as the livestock most targeted by leopards. The Dolakha district of GCA received the highest number of reports, highlighting the need for mitigation measures in the area. In GCA, livestock attacks accounted for 85% of compensation, with the remaining 15% for human injuries. We estimate that the number of reported wildlife attacks grew on average by 33% per year, with an additional increase of 57 reports per year following the implementation of a new compensation policy during BS 2076 (2019 AD). While bear attacks showed no significant change post-rule alteration, leopard attack reports surged from 1 to 60 annually, indicating improved compensation may have resulted in increased leopard-attack reporting rates. The findings emphasize the economic impact of HWC on local communities and suggest strategies such as increasing prey populations, promoting community education and awareness, enhancing alternative livelihood options, developing community-based insurance programs, and implementing secure enclosures (corrals) to minimize conflicts and foster harmonious coexistence. This research addresses a knowledge gap in HWC in high- altitude conservation areas like the GCA, providing valuable insights for conservation stakeholders and contributing to biodiversity conservation and the well-being of humans and wildlife.
|
|
|
Rashid, W., Shi, J., Rahim, I. U., Dong, S., Ahmad, L. (2020). Research trends and management options in human-snow leopard conflict. Biological Conservation, 242(108413), 1–10.
Abstract: Conservation of the snow leopard (Panthera uncia) is challenging because of its threatened status and increase in human-snow leopard conflict (HSC). The area of occupancy of the snow leopard comprises mountainous regions of Asia that are confronted with various environmental pressures including climate change. HSCs have increased with a burgeoning human population and economic activities that enhance competition between human and snow leopard or its preys. Here we systematically review the peer-reviewed literature from 1994 to 2018 in Web of Science, Google Scholar, Science Direct and PubMed (30 articles), to evaluate the current state of scholarship about HSCs and their management. We determine: 1) the spatio-temporal distribution of relevant researches; 2) the methodologies to assess HSCs; 3) and evaluate existing interventions for conflict management; and 4) the potential options for HSC management. The aim of the current study is thus to identify key research gaps and future research requirements. Of the articles in this review, 60% evaluated the mitigation of HSCs, while only 37% provided actionable and decisive results. Compensation programs and livestock management strategies had high success rates for mitigating HSCs through direct or community-managed interventions. Further research is required to evaluate the efficacy of existing HSC mitigation strategies, many of which, while recommended, lack proper support. In spite of the progress made in HSC studies, research is needed to examine ecological and sociocultural context of HSCs. We suggest future work focus on rangeland management for HSC mitigation, thus ultimately fostering a co-existence between human and snow leopard.
|
|
|
Sangay, T., & Vernes, K. (2008). Human-wildlife conflict in the Kingdom of Bhutan: Patterns of livestock predation by large mammalian carnivores (Vol. 141).
Abstract: We examined predation activity throughout Bhutan by tiger (Panthera tigris), common leopard (Panthera pardus), snow leopard (Uncia uncia) and Himalayan black bear (Ursus thibetanus) on a variety of livestock types using data gathered over the first two years (2003-2005) of a compensation scheme for livestock losses. One thousand three hundred and seventy five kills were documented, with leopards killing significantly more livestock (70% of all kills),
than tigers (19%), bears (8%) and snow leopards (2%). About 50% of livestock killing were of cattle, and about 33% were of horses, with tigers, leopards and snow leopards killing a significantly greater proportion of horses than predicted from availability. Examination of cattle kills showed that leopards killed a significantly greater proportion of smaller prey (e.g., calves), whereas tigers killed a significantly greater proportion of larger prey (e.g., bulls). Overall, livestock predation was greatest in summer and autumn which corresponded with a peak in cropping agriculture; livestock are turned out to pasture and forest during the cropping season, and subsequently, are less well guarded than at other times. Across Bhutan, high horse density and low cattle and yak density were associated with high rates of livestock attack, but no relationship was found with forest cover or human population density. Several northern districts were identified as 'predation hotspots', where proportions of livestock lost to predation were considerable, and the ratio of reported kills to relative abundance of livestock was high. Implications of our findings for mitigating livestock losses and for conserving large carnivores in Bhutan are discussed.
|
|