|
Alexander, J. S., Agvaantseren, B., Gongor, E., Mijiddorj, T. N., Piaopiao, T., Stephen Redpath, S., Young, J., Mishra, C. (2021). Assessing the Effectiveness of a Community-based Livestock Insurance Program. Environmental Management, .
|
|
|
Filla, M., Lama, R. P., Filla, T., Heurich, M., Balkenhol, N., Waltert, M., Khorozyan, I. (2022). Patterns of livestock depredation by snow leopards and effects of intervention strategies: lessons from the Nepalese Himalaya. Wildlife Research, .
Abstract: Context: Large carnivores are increasingly threatened by anthropogenic activities, and their protection is among the main goals of biodiversity conservation. The snow leopard (Panthera uncia) inhabits high-mountain landscapes where livestock depredation drives it into conflicts with local people and poses an obstacle for its conservation.
Aims: The aim of this study was to identify the livestock groups most vulnerable to depredation, target them in implementation of practical interventions, and assess the effectiveness of intervention strategies for conflict mitigation. We present a novel attempt to evaluate intervention strategies for particularly vulnerable species, age groups, time, and seasons.
Methods: In 2020, we conducted questionnaire surveys in two regions of the Annapurna Conservation Area, Nepal (Manang, n = 146 respondents and Upper Mustang, n = 183). We applied sample comparison testing, Jacobs’ selectivity index, and generalised linear models (GLMs) to assess rates and spatio-temporal heterogeneity of depredation, reveal vulnerable livestock groups, analyse potential effects of applied intervention strategies, and identify husbandry factors relevant to depredation.
Key results: Snow leopard predation was a major cause of livestock mortality in both regions (25.4–39.8%), resulting in an estimated annual loss of 3.2–3.6% of all livestock. The main intervention strategies (e.g. corrals during night-time and herding during daytime) were applied inconsistently and not associated with decreases in reported livestock losses. In contrast, we found some evidence that dogs, deterrents (light, music playing, flapping tape, and dung burning), and the use of multiple interventions were associated with a reduction in reported night-time depredation of yaks.
Conclusions and implications: We suggest conducting controlled randomised experiments for quantitative assessment of the effectiveness of dogs, deterrents, and the use of multiple interventions, and widely applying the most effective ones in local communities. This would benefit the long-term co-existence of snow leopards and humans in the Annapurna region and beyond.
|
|
|
Filla, M., Lama, R. P., Ghale, T. R., Filla, T., Heurich, M., Waltert, M., Khorozyan, I. (2022). Blue sheep strongly affect snow leopard relative abundance but not livestock depredation in the Annapurna Conservation Area, Nepal. Global Ecology and Conservation, 37(e02153), 1–15.
Abstract: Large carnivores play key roles in their ecosystems, but their protection is a major challenge in biodiversity conservation due to conflicts with human interests. The snow leopard (Panthera uncia) is the top predator of Asian high-altitude landscapes and faces various threats including wild prey depletion and illegal killings as a consequence of livestock depredation. As the interactions between snow leopards, wild prey, and livestock are still insufficiently understood, we studied the effects of 1) wild prey (blue sheep Pseudois nayaur and Himalayan marmots Marmota himalayana) and domestic prey on snow leopard relative abundance, and of 2) these ecological parameters and intervention applications on livestock depredation by snow leopards. In the Annapurna Conservation Area, Nepal, we monitored wildlife populations and livestock along transects (490.8 km) in 82 grid cells (4 ×4 km) in 2019 and 2021 and conducted questionnaire surveys to determine livestock depredation between 2018 and 2021 (n = 479 households). We applied generalized linear models (GLMs) and sample comparison testing to examine the effects of prey densities and other environmental and anthropogenic predictors on snow leopard relative abundance and livestock depredation. Blue sheep density strongly positively affected snow leopard relative abundance, which also increased with terrain ruggedness and decreased with increasing densities of livestock and the human population. The size of livestock holdings shaped depredation events of large livestock (yak, cattle and horse), whereas depredation events of sheep and goats, which accounted for most (68.6%) depredated animals, decreased with increasing human population density and marmot presence. The strong impact of blue sheep on snow leopard relative abundance supports demands for integrating this ungulate into conservation and management plans, including wild prey recovery and translocation. The rather weak evidence for effects of blue sheep on depredation events suggests that conflicts over livestock depredation by snow leopards would neither be inflicted nor solved by increasing wild prey abundance. This demonstrates the need to improve intervention strategies in the Annapurna region, such as predator-proofing corrals and optimizing daytime herding practices. We suggest further exploring the effects of marmots and other secondary prey on livestock depredation rates, and testing the suitability of additional interventions, e.g., dogs and deterrents, as conflict mitigation tools. Our results will support wildlife managers in setting conservation priorities to promote the long-term co-existence of local people and snow leopards.
|
|
|
Mijiddorj, T. N., Alexander, J. S., Samelius, G. (2018). Livestock depredation by large carnivores in the South Gobi, Mongolia. Wildlife Research, , A-J.
Abstract: Context. Livestock depredation is a major conservation challenge around the world, causing considerable economical losses to pastoral communities and often result in retaliatory killing. In Mongolia, livestock depredation rates are thought to be increasing due to changes in pastoral practices and the transformation of wild habitats into pasture lands. Few studies have examined the interactions between humans and carnivores and even fewer have considered how recent changes in pastoral practices may affect depredation rates.
Aim. This study aimed to assess the influence of herding practices on self-reported livestock losses to snow leopards and wolves in two communities in South Gobi, Mongolia. Methods. In total, 144 herder households were interviewed and an information-theoretic approach was used to analyse the factors influencing self-reported livestock losses to snow leopards and wolves. Key results. The majority of self-reported losses to both snow leopards and wolves occurred when herds were left unattended in the pastures. The economic loss associated with livestock losses to snow leopards and wolves amounted to an average loss of US$825 per herder and year. The number of livestock owned by a household and the frequency of shifting campsite had the strongest influence on livestock losses to snow leopards and wolves. Other determinants of livestock losses included frequency of visiting the soum (county) centre. Implications. On the basis of the findings, we make recommendations for mitigating the conflict with large carnivores, with focus on guiding future herding practices.
|
|
|
Rashid, W., Shi, J., Rahim, I. U., Dong, S., Ahmad, L. (2020). Research trends and management options in human-snow leopard conflict. Biological Conservation, 242(108413), 1–10.
Abstract: Conservation of the snow leopard (Panthera uncia) is challenging because of its threatened status and increase in human-snow leopard conflict (HSC). The area of occupancy of the snow leopard comprises mountainous regions of Asia that are confronted with various environmental pressures including climate change. HSCs have increased with a burgeoning human population and economic activities that enhance competition between human and snow leopard or its preys. Here we systematically review the peer-reviewed literature from 1994 to 2018 in Web of Science, Google Scholar, Science Direct and PubMed (30 articles), to evaluate the current state of scholarship about HSCs and their management. We determine: 1) the spatio-temporal distribution of relevant researches; 2) the methodologies to assess HSCs; 3) and evaluate existing interventions for conflict management; and 4) the potential options for HSC management. The aim of the current study is thus to identify key research gaps and future research requirements. Of the articles in this review, 60% evaluated the mitigation of HSCs, while only 37% provided actionable and decisive results. Compensation programs and livestock management strategies had high success rates for mitigating HSCs through direct or community-managed interventions. Further research is required to evaluate the efficacy of existing HSC mitigation strategies, many of which, while recommended, lack proper support. In spite of the progress made in HSC studies, research is needed to examine ecological and sociocultural context of HSCs. We suggest future work focus on rangeland management for HSC mitigation, thus ultimately fostering a co-existence between human and snow leopard.
|
|
|
Sharma, R. K., Sharma, K., Borchers, D., Bhatnagar, Y. V., Suryawanshi, K. S., Mishra, C. (2020). Spatial variation in population-density, movement and detectability of snow leopards in
2 a multiple use landscape in Spiti Valley, Trans-Himalaya. bioRxiv, .
Abstract: The endangered snow leopard Panthera uncia occurs in human use landscapes in the mountains of South and Central Asia. Conservationists generally agree that snow leopards must be conserved through a land-sharing approach, rather than land-sparing in the form of strictly protected areas. Effective conservation through land-sharing requires a good understanding of how snow leopards respond to human use of the landscape. Snow leopard density is expected to show spatial variation within a landscape because of variation in the intensity of human use and the quality of habitat. However, snow leopards have been difficult to enumerate and monitor. Variation in the density of snow leopards remains undocumented, and the impact of human use on their populations is poorly understood. We examined spatial variation in snow leopard density in Spiti Valley, an important snow leopard landscape in India, via spatially explicit capture recapture analysis of camera trap data. We camera trapped an area encompassing a minimum convex polygon of 953 km . We estimated an overall density of 0.49 (95% CI: 0.39-0.73) adult snow leopards per 100 km . Using AIC, our best model showed the density of snow leopards to depend on wild prey density, movement about activity centres to depend on altitude, and the expected number of encounters at the activity centre to depend on topography. Models that also used livestock biomass as a density covariate ranked second, but the effect of livestock was weak. Our results highlight the importance of maintaining high density pockets of wild prey populations in multiple use landscapes to enhance snow leopard conservation.
|
|
|
Sharma, R. K., Bhatnagar, Y. V., Mishra, C. (201). Does livestock benefit or harm snow leopards? Biological Conservatio, (190), 8–13.
Abstract: Large carnivores commonly prey on livestock when their ranges overlap. Pastoralism is the dominant land use type across the distributional range of the endangered snow leopard Panthera uncia. Snow leop- ards are often killed in retaliation against livestock depredation. Whether livestock, by forming an alter- native prey, could potentially benefit snow leopards, or, whether livestock use of an area is detrimental to snow leopards is poorly understood. We examined snow leopard habitat use in a multiple use landscape that was comprised of sites varying in livestock abundance, wild prey abundance and human population size. We photographically sampled ten sites (average size 70 sq. km) using ten camera traps in each site, deployed for a period of 60 days. Snow leopard habitat use was computed as a Relative Use Index based on the total independent photographic captures and the number of snow leopard individuals captured at each site. We quantified livestock abundance, wild prey abundance, human population size and terrain ruggedness in each of the sites. Key variables influencing snow leopard habitat use were identified using Information Theory based model selection approach. Snow leopard habitat use was best explained by wild prey density, and showed a positive linear relationship with the abundance of wild ungulates. We found a hump-shaped relationship between snow leopard habitat use and livestock stocking density, with an initial increase in habitat use followed by a decline beyond a threshold of livestock density. Our results suggest that in the absence of direct persecution of snow leopards, livestock grazing and snow leopard habitat use are potentially compatible up to a certain threshold of livestock density, beyond which habitat use declines, presumably due to depressed wild ungulate abundance and associated anthropogenic disturbance.
|
|
|
Shrestha, B. (2008). Prey Abundance and Prey Selection by Snow Leopard (uncia uncia) in the Sagarmatha (Mt. Everest) National Park, Nepal.
Abstract: Predators have significant ecological impacts on the region's prey-predator dynamic and community structure through their numbers and prey selection. During April-December 2007, I conducted a research in Sagarmatha (Mt. Everest) National Park (SNP) to: i) explore population status and density of wild prey species; Himalayan tahr, musk deer and game birds, ii) investigate diet of the snow leopard and to estimate prey selection by snow leopard, iii) identify the pattern of livestock depredation by snow leopard, its mitigation, and raise awareness through outreach program, and identify the challenge and opportunities on conservation snow leopard and its co-existence with wild ungulates and the human using the areas of the SNP. Methodology of my research included vantage points and regular monitoring from trails for Himalayan tahr, fixed line transect with belt drive method for musk deer and game birds, and microscopic hair identification in snow leopard's scat to investigate diet of snow leopard and to estimate prey selection. Based on available evidence and witness accounts of snow leopard attack on livestock, the patterns of livestock depredation were assessed. I obtained 201 sighting of Himalayan tahr (1760 individuals) and estimated 293 populations in post-parturient period (April-June), 394 in birth period (July -October) and 195 November- December) in rutting period. In average, ratio of male to females was ranged from 0.34 to 0.79 and ratio of kid to female was 0.21-0.35, and yearling to kid was 0.21- 0.47. The encounter rate for musk deer was 1.06 and density was 17.28/km2. For Himalayan monal, the encounter rate was 2.14 and density was 35.66/km2. I obtained 12 sighting of snow cock comprising 69 individual in Gokyo. The ratio of male to female was 1.18 and young to female was 2.18. Twelve species (8 species of wild and 4 species of domestic livestock) were identified in the 120 snow leopard scats examined. In average, snow leopard predated most frequently on Himalayan tahr and it was detected in 26.5% relative frequency of occurrence while occurred in 36.66% of all scats, then it was followed by musk deer (19.87%), yak (12.65%), cow (12.04%), dog (10.24%), unidentified mammal (3.61%), woolly hare (3.01%), rat sp. (2.4%), unidentified bird sp. (1.8%), pika (1.2%), and shrew (0.6%) (Table 5.8 ). Wild species were present in 58.99% of scats whereas domestic livestock with dog were present in 40.95% of scats. Snow leopard predated most frequently on wildlife species in three seasons; spring (61.62%), autumn (61.11%) and winter (65.51%), and most frequently on domestic species including dog in summer season (54.54%). In term of relative biomass consumed, in average, Himalayan tahr was the most important prey species contributed 26.27% of the biomass consumed. This was followed by yak (22.13%), cow (21.06%), musk deer (11.32%), horse (10.53%), wooly hare (1.09%), rat (0.29%), pika (0.14%) and shrew (0.07%). In average, domestic livestock including dog were contributed more biomass in the diet of snow leopard comprising 60.8% of the biomass consumed whilst the wild life species comprising 39.19%. The annual prey consumption by a snow leopard (based on 2 kg/day) was estimated to be three Himalayan tahr, seven musk deer, five wooly hare, four rat sp., two pika, one shrew and four livestock. In the present study, the highest frequency of attack was found during April to June and lowest to July to November. The day of rainy and cloudy was the more vulnerable to livestock depredation. Snow leopard attacks occurred were the highest at near escape cover such as shrub land and cliff. Both predation pressure on tahr and that on livestock suggest that the development of effective conservation strategies for two threatened species (predator and prey) depends on resolving conflicts between people and predators. Recently, direct control of free – ranging livestock, good husbandry and compensation to shepherds may reduce snow leopard – human conflict. In long term solution, the reintroduction of blue sheep at the higher altitudes could also “buffer” predation on livestock.
|
|
|
Spearing, A. (2002). The Snow Leopard in Zanskar, Jammu & Kashmir, NW India.. Islt: Islt.
Abstract: The paper summarises the alleged conflict between livestock herders and wild predators in the trans-Himalayan region of Zanskar, NW India. The snow leopard (Uncia uncia) is seriously threatened by this conflict, with at least thirteen killed in the last seven years in 3 of the study villages alone. Results of snow leopard sign surveys are described, revealing significant increases since the last survey (1986) consistent with alleged increases in livestock depredation. Attitudes toward wildlife and opinions on population trends are assessed. Depredation hotspots are identified and the cost of livestock predation is
discussed in terms of recent developments and social changes in the Zanskar region.
Illegal hunting and retaliatory killing are described, and essential programs and
conservation measures are suggested. Even at this early stage, there appears scope for raising rural incomes and lifting the burden of co-existence with snow leopard and other unique mountain fauna.
|
|
|
The Snow Leopard Conservancy. (2001). Visitor Attitude and Market Survey for Planning Community-based Tourism Initiatives in Rural Ladakh (Vol. SLC Field Series Document No. 2.). Los Gatos, California.
Abstract: Bounded by two of the world's highest mountain ranges, the Great Himalaya and the Karakoram, Ladakh is a land of exhilarating mountain landscapes, rocky gorges and a unique cultural heritage. It is also home to distinctive wildlife such as the snow leopard, blue sheep and Tibetan wild ass, all living in a unique high altitude desert ecosystem. Not surprisingly, Ladakh is becoming a sought after tourist destination for international and domestic visitors alike. Over the past two decades tourism has grown substantially, although erratically, with both positive and less positive results for Ladakh's environment and people. People are recognizing that it is important to act now and engage in an informed dialogue in order to conserve the natural and cultural resources on which the future of tourism and related incomes depend. The Snow Leopard Conservancy (SLC) is working in collaboration with local communities and nongovernmental organizations to foster co-existence between people and predators like the endangered snow leopard by reducing livestock depredation losses and improving household incomes in environmentally friendly, socially responsible and economically viable ways. Well-balanced tourism is one income generating option.
|
|