|
Slifka, K., Stacewicz-Sapuntzakis, S. M., Bowen, P., & Crissey, S. (1999). A Survey of Serum and Dietary Carotenoids in Captive Wild Animals. The Journal of Nutrition, 129, 380–390.
Abstract: Accumulation of carotenoids varies greatly among animal species and is not fully characterized.
Circulating carotenoid concentration data in captive wild animals are limited and may be useful for their management.
Serum carotenoid concentrations and dietary intakes were surveyed and the extent of accumulation
categorized for 76 species of captive wild animals at Brookfield Zoo. Blood samples were obtained opportunistically
from 275 individual animals immobilized for a variety of reasons; serum was analyzed for a- and b-carotene,
lutein 1 zeaxanthin, lycopene, b-cryptoxanthin and canthaxanthin. Total carotenoid content of diets was calculated
from tables and chemical analyses of commonly consumed dietary components. Diets were categorized as
low, moderate or high in carotenoid content as were total serum carotenoid concentrations. Animals were
classified as unknown, high, moderate or low (non-) accumulators of dietary cartenoids. Nonaccumulators had total
serum carotenoid concentrations of 0-101 nmol/L, whereas accumulators had concentrations that ranged widely,
from 225 to 35,351 nmol/L. Primates were uniquely distinguished by the widest range of type and concentration
of carotenoids in their sera. Most were classified as high to moderate accumulators. Felids had high accumulation
of b-carotene regardless of dietary intake, whereas a wide range of exotic birds accumulated only the xanthophylls,
lutein 1 zeaxanthin, canthaxanthin or cryptoxanthin. The exotic ungulates, with the exception of the bovids, had
negligible or nondetectable carotenoid serum concentrations despite moderate intakes. Bovids accumulated only
b-carotene despite moderately high lutein 1 zeaxanthin intakes. Wild captive species demonstrated a wide variety
of carotenoid accumulation patterns, which could be exploited to answer remaining questions concerning carotenoid
metabolism and function.
|
|