|
Alexander, J. S., Gopalswamy, A. M., Shi, K., Riordan, P. (2015). Face Value: Towards Robust Estimates of Snow Leopard Densities. Plos One, .
Abstract: When densities of large carnivores fall below certain thresholds, dramatic ecological effects
can follow, leading to oversimplified ecosystems. Understanding the population status of
such species remains a major challenge as they occur in low densities and their ranges are
wide. This paper describes the use of non-invasive data collection techniques combined
with recent spatial capture-recapture methods to estimate the density of snow leopards
Panthera uncia. It also investigates the influence of environmental and human activity indicators
on their spatial distribution. A total of 60 camera traps were systematically set up during
a three-month period over a 480 km2 study area in Qilianshan National Nature Reserve,
Gansu Province, China. We recorded 76 separate snow leopard captures over 2,906 trapdays,
representing an average capture success of 2.62 captures/100 trap-days. We identified
a total number of 20 unique individuals from photographs and estimated snow leopard
density at 3.31 (SE = 1.01) individuals per 100 km2. Results of our simulation exercise indicate
that our estimates from the Spatial Capture Recapture models were not optimal to
respect to bias and precision (RMSEs for density parameters less or equal to 0.87). Our
results underline the critical challenge in achieving sufficient sample sizes of snow leopard
captures and recaptures. Possible performance improvements are discussed, principally by
optimising effective camera capture and photographic data quality.
|
|
|
Bangjie, T., & Bingxing, Q. (1994). The Status and Problems of Snow Leopards in Captivity in China. In J.L.Fox, & D.Jizeng (Eds.), (pp. 149–156). Usa: Islt.
|
|
|
Durbach, I., Borchers, D., Sutherland, C., Sharma, K. (2020). Fast, flexible alternatives to regular grid designs for spatial
capture–recapture..
Abstract: Spatial capture–recapture (SCR) methods use the location of
detectors (camera traps, hair snares and live-capture traps) and the
locations at which animals were detected (their spatial capture
histories) to estimate animal density. Despite the often large expense
and effort involved in placing detectors in a landscape, there has been
relatively little work on how detectors should be located. A natural
criterion is to place traps so as to maximize the precision of density
estimators, but the lack of a closed-form expression for precision has
made optimizing this criterion computationally demanding. 2. Recent
results by Efford and Boulanger (2019) show that precision can be well
approximated by a function of the expected number of detected
individuals and expected number of recapture events, both of which can
be evaluated at low computational cost. We use these results to develop
a method for obtaining survey designs that optimize this approximate
precision for SCR studies using count or binary proximity detectors, or
multi-catch traps. 3. We show how the basic design protocol can be
extended to incorporate spatially varying distributions of activity
centres and animal detectability. We illustrate our approach by
simulating from a camera trap study of snow leopards in Mongolia and
comparing estimates from our designs to those generated by regular or
optimized grid designs. Optimizing detector placement increased the
number of detected individuals and recaptures, but this did not always
lead to more precise density estimators due to less precise estimation
of the effective sampling area. In most cases, the precision of density
estimators was comparable to that obtained with grid designs, with
improvement in some scenarios where approximate CV(¬D) < 20% and density
varied spatially. 4. Designs generated using our approach are
transparent and statistically grounded. They can be produced for survey
regions of any shape, adapt to known information about animal density
and detectability, and are potentially easier and less costly to
implement. We recommend their use as good, flexible candidate designs
for SCR surveys when reasonable knowledge of model parameters exists. We
provide software for researchers to construct their own designs, in the
form of updates to design functions in the r package oSCR.
|
|
|
Harris, R. B. (1994). A note on snow leopards and local people in Nangqian County, Southern Qinghai Province. In J.L.Fox, & D. Jizeng (Eds.), (pp. 79–84). Usa: Islt.
|
|
|
Henschel, P., & Ray, J. (2003). Leopards in African Rainforests: Survey and Monitoring Techniques (Wildlife Conservation Society, Ed.).
Abstract: Monitoring Techniques Forest leopards have never been systematically surveyed in African forests, in spite of their potentially vital ecological role as the sole large mammalian predators in these systems. Because leopards are rarely seen in this habitat, and are difficult to survey using the most common techniques for assessing relative abundances of forest mammals, baseline knowledge of leopard ecology and responses to human disturbance in African forests remain largely unknown. This technical handbook sums up the experience gained during a two-year study of leopards by Philipp Henschel in the Lop‚ Reserve in Gabon, Central Africa, in 2001/2002, supplemented by additional experience from carnivore studies conducted by Justina Ray in southwestern Central African Republic and eastern Congo (Zaire) . The main focus of this effort has been to develop a protocol that can be used by fieldworkers across west and central Africa to estimate leopard densities in various forest types. In developing this manual, Henschel tested several indirect methods to assess leopard numbers in both logged and unlogged forests, with the main effort devoted to testing remote photography survey methods developed for tigers by Karanth (e.g., Karanth 1995, Karanth & Nichols 1998; 2000; 2002), and modifying them for the specific conditions characterizing African forest environments. This handbook summarizes the results of the field testing, and provides recommendations for techniques to assess leopard presence/absence, relative abundance, and densities in African forest sites. We briefly review the suitability of various methods for different study objectives and go into particular detail on remote photography survey methodology, adapting previously developed methods and sampling considerations specifically to the African forest environment. Finally, we briefly discuss how camera trapping may be used as a tool to survey other forest mammals. Developing a survey protocol for African leopards is a necessary first step towards a regional assessment and priority setting exercise targeted at forest leopards, similar to those carried out on large carnivores in Asian and South American forests.
|
|
|
Hussain, I. (1999). Conserving Biodiversity through Institutional Diversity: Concept Paper.
|
|
|
Jack, R. (2008). DNA Testing and GPS positioning of snow leopard (Panthera uncia) genetic material in the Khunjerab National Park Northern Areas, Pakistan.
Abstract: The protection of Snow Leopards in the remote and economically disadvantaged Northern Areas of Pakistan needs local people equipped with the skills to gather and present information on the number and range of individual animals in their area. It is important for the success of a conservation campaign that the people living in the area are engaged in the conservation process. Snow Leopards are elusive and range through inhospitable terrain so direct study is difficult. Consequently the major goals for this project were twofold, to gather information on snow leopard distribution in this area and to train local university students and conservation management professionals in the techniques used for locating snow leopards without the need to capture or even see the animals. This project pioneered the use of DNA testing of field samples collected in Pakistan to determine the distribution of snow leopards and to attempt to identify individuals. These were collected in and around that country's most northerly national park, the Kunjurab National Park, which sits on the Pakistan China border. Though the Northern Areas is not a well developed part of Pakistan, it does possess a number of institutions that can work together to strengthen snow leopard conservation. The first of these is a newly established University with students ready to be trained in the skills needed. Secondly WWF-Pakistan has an office in the main town and a state of the art GIS laboratory in Lahore and already works closely with the Forest Department who manage the national park. All three institutions worked together in this project with WWF providing GIS expertise, the FD rangers, and the university students carrying out the laboratory work. In addition in the course of the project the University of the Punjab in Lahore also joined the effort, providing laboratory facilities for the students. As a result of this project maps have been produced showing the location of snow leopards in
two areas. Preliminary DNA evidence indicates that there is more than one animal in this
relatively small area, but the greatest achievement of this project is the training and
experience gained by the local students. For one student this has been life changing. Due to
the opportunities provided by this study the student, Nelofar gained significant scientific
training and as a consequence she is now working as a lecturer and research officer for the
Center for Integrated Mountain Research, New Campus University of the Punjab, Lahore
Pakistan
|
|
|
Jackson, R., Ahlborn, G., & Shah, K. B. (1990). Capture and Immobilization of wild snow leopards. Int.Ped.Book of Snow Leopards, 6, 93–102.
|
|
|
Jackson, R., Roe, J., Wangchuk, R., & Hunter, D. (2006). Estimating Snow Leopard Population Abundance Using Photography and Capture-Recapture Techniques (Vol. 34).
Abstract: Conservation and management of snow leopards (Uncia uncial) has largely relied on anecdotal evidence and presence-absence data due to their cryptic nature and the difficult terrain they inhabit. These methods generally lack the scientific rigor necessary to accurately estimate population size and monitor trends. We evaluated the use of photography in capture-mark-recapture (CMR) techniques for estimating snow leopard population abundance and density within Hemis National Park, Ladakh, India. We placed infrared camera traps along actively used travel paths, scent-sprayed rocks, and scrape sites within 16-30 kmý sampling grids in successive winters during January and March 2003-2004. We used head-on, oblique, and side-view camera configurations to obtain snow leopard photographs at varying body orientations. We calculated snow leopard abundance estimates using the program CAPTURE. We obtained a total of 66 and 49 snow leopard captures resulting in 8.91 and 5.63 individuals per 100 trap nights during 2003 and 2004, respectively. We identified snow leopards based on the distinct pelage patters located primarily on the forelimbs, flanks, and dorsal surface of the tail. Capture probabilities ranged from 0.33 to 0.67. Density estimates ranged from 8.49 (SE+0.22) individuals per 100 kmý in 2003 to 4.45 (SE+0.16) in 2004. We believe the density disparity between years is attributable to different trap density and placement rather than to an actual decline in population size. Our results suggest that photographic capture-mark-recapture sampling may be a useful tool for monitoring demographic patterns. However, we believe a larger sample size would be necessary for generating a statistically robust estimate of population density and abundance based on CMR models.
|
|
|
Jackson, R. M. (1996). Home Range, Movements and Habitat use of Snow Leopard (Uncia uncia) in Nepal. Ph.D. thesis, University of London, University of London.
Abstract: Home ranges for five radio-tagged snow leopards (Uncia uncia) inhabiting prime habitat in Nepal Himalaya varied in size from 11-37 km2. These solitary felids were crepuscular in activity, and although highly mobile, nearly 90% of all consecutive day movements involved a straight line distance of 2km or less. No seasonal difference in daily movement or home range boundry was detected. While home ranges overlapped substancially, use of common core spaces was temporally seperated, with tagged animals being located 1.9 km or more apart during the smae day. Spatial analysis indicated that 47-55% of use occured within only 6-15% of total home area. The snow leopards shared a common core use area, which was located at a major stream confuence in an area where topography, habitat and prey abundance appeared to be more favorable. A young female used her core area least, a female with two cubs to the greatest extent. the core area was marked significantly more with scrapes, Faeces and other sighn than non-core sites, suggesting that social marking plays an important role in spacing individuals. Snow leopards showed a strong preference for bedding in steep, rocky or broken terrain, on or close to a natural vegetation or landform edge. linear landform features, such as a cliff or major ridgeline, were preferred for travelling and day time resting. This behavior would tend to place a snow leopard close to its preferred prey, blue sheep (Psuedois nayaur), which uses the same habitat at night. Marking was concetrated along commonly travelled routes, particularly river bluffs, cliff ledges and well defined ridgelines bordering stream confluences--features that were most abundant within the core area. Such marking may facilitate mutual avoidance, help maintain the species' solitary social structure, and also enable a relatively high density of snow leopard, especially within high-quality habitat.
|
|
|
Jalanka, H. H. (1989). Evaluation and comparison of 2 ketamine-based immobilization techniques in snow leopards (Panthera uncia). Journal of Zoo and Wildlife Medicine, 20(2), 163–169.
|
|
|
Jiang, Z. (2005). Snow leopards in the Dulan International Hunting Ground, Qinghai, China.
Abstract: From March to May, 2006œªwe conducted extensive snow leopard surveys in the Burhanbuda Mountain Kunlun Mountains, Qinghai Province, China. 32 linear transect of 5~15 km each, which running through each vegetation type, were surveyed within the study area. A total of 72 traces of snow leopard were found along 4 transects (12.5% of total transects). The traces included pug marks or footprints, scrapes and urine marks. We estimated the average density of wild ungulates in the region was 2.88ñ0.35 individuals km-2(n=29). We emplaced 16 auto2 trigger cameras in different environments and eight photos of snow leopard were shot by four cameras and the capture rate of snow leopard was 71.4%. The minimum snow leopard population size in the Burhanbuda Mountain was two, because two snow leopards were phototrapped by different cameras at almost same time. Simultaneously, the cameras also shot 63 photos of other wild animals, including five photos are unidentified wild animals, and 20 photos of livestock. We evaluated the human attitudes towards snow leopard by interviewing with 27 Tibetan householders of 30 householders live in the study area. We propose to establish a nature reserve for protecting and managing snow leopards in the region. Snow leopard (Uncia uncia) is considered as a unique species because it lives above the snow line, it is endemic to alpines in Central Asia, inhabiting in 12 countries across Central Asia (Fox, 1992). Snow leopard ranges in alpine areas in Qinghai, Xinjiang, Inner Mongolia, Tibet, Gansu and Sichuan in western China (Liao, 1985, 1986; Zhou, 1987; Ma et al., 2002; Jiang & Xu, 2006). The total population and habitat of snow leopards in China are estimated to be 2,000~2,500 individuals and 1,824,316 km2, only 5% of which is under the protection of nature reserves. The cat's current range is fragmented (Zou & Zheng, 2003). Due to strong human persecutions, populations of snow leopards decreased significantly since the end of the 20th century. Thus, the
snow leopards are under the protection of international and domestic laws. From March to May, 2006, we conducted two field surveys in Zhiyu Village, Dulan County in Burhanbuda Mountain, Kunlun Mountains, China to determine the population, distribution and survival status of snow leopards in the area. The aim of the study was to provide ecologic data for snow leopard conservation.
|
|
|
Johansson, O., Kachel, S., Weckworth, B. (2022). Guidelines for Telemetry Studies on Snow Leopards. Animals, 12(1663), 1–12.
Abstract: Animal-borne tracking devices have generated a wealth of new knowledge, allowing us to better understand, manage and conserve species. Fitting such tracking devices requires that animals are captured and often chemically immobilized. Such procedures cause stress and involve the risk of injuries and loss of life even in healthy individuals. For telemetry studies to be justifiable, it is vital that capture operations are planned and executed in an efficient and ethical way. Project objectives must be clearly articulated to address well-defined knowledge gaps, and studies designed to maximize the probability of achieving those goals. We provide guidelines for how to plan, design, and implement telemetry studies with a special emphasis on snow leopards that are typically captured using foot snares. We also describe the necessary steps to ensure that captures are conducted safely, and with minimal stress to animals.
|
|
|
Kachel, S. M., Karimov, K., Wirsing, A. J. (2022). Predator niche overlap and partitioning and potential interactions in the mountains of Central Asia. Journal of Mammalogy, XX(X), 1–11.
Abstract: Direct and indirect interactions among predators affect predator fitness, distribution, and overall community structure. Yet, outside of experimental settings, such interactions are difficult to observe and thus poorly understood. Patterns of niche overlap among predators reflect and shape community interactions and may therefore help elucidate the nature and intensity of intraguild interactions. To better understand the coexistence of two apex predators, snow leopards (Panthera uncia) and wolves (Canis lupus), we investigated their spatial, temporal, and dietary niche overlap in summer in the Pamir Mountains of Tajikistan. We estimated population- level space use via spatial capture–recapture models based on noninvasive genetics and camera traps, diel activity patterns based on camera trap detections, and diet composition from prey remains in carnivore scats, from which we estimated coefficients between 0 and 1 for overlap in space, time, and diet, respectively. Snow leopards and wolves displayed moderate spatial partitioning (0.26, 95% confidence interval [CI]: 0.17–37), but overlapping temporal (0.77, 95% CI: 0.64–0.90) and dietary (0.97, 95% CI: 0.80–0.99) niches. Both predators relied on seasonally abundant marmots (Marmota caudata) rather than wild ungulates, their typical primary prey, suggesting that despite patterns of overlap that were superficially conducive to exploitation competition and predator facilitation, prey were likely not a limiting factor. Therefore, prey-mediated interactions, if present, were unlikely to be a major structuring force in the ecosystem. By implication, carnivore conservation planning and monitoring in the mountains of Central Asia should more fully account for the seasonal importance of marmots in the ecosystem.
|
|
|
Li, X., Wei, C., Chen, X., Jia, D., Li, P., Liang, S., Jikmed, A., Gao, Y., Zhao, X., Chu, M., Sharma, K., Alexander, J. A., Lu, Z., Xiao, L. (2025). First large‑scale assessment of snow leopard population in China using existing data from multiple organizations. Biodiversity and Conservation, , 1–17.
Abstract: Abundance estimation of large carnivores is essential for their effective conservation planning, yet estimating population size is challenging due to their elusive and wide-ranging nature. China is estimated to encompass 60% of the snow leopard Panthera uncia habitat, making it a crucial pillar for global snow leopard conservation. However, no large-scale population assessment has been conducted despite scattered survey effort accumulating rapidly in recent years. This study combined and standardized existing camera trap sur-
vey data from 12 sites collected by four organizations during 2015 ~ 2021 to estimate snow leopard population in an area of 360,000 km2 on the Tibetan Plateau, China. The representativeness of existing survey was evaluated based on two habitat stratification approaches to achieve less biased population assessment. Spatially explicit capture-recapture (SECR) models were applied for snow leopard density estimation and the top-ranked model showed a significant positive correlation between conservation priority strata and density. An average snow leopard density of 0.90 /100 km2 (95% CI: 0.68 ~ 1.21 /100 km2) and a population size of 1,002 (95% CI: 755 ~ 1,341) individuals was estimated for the defined snow leopard habitat. Two more conservative estimates of 971 (95% CI: 732 ~ 1,287) and 978 (95% CI: 737 ~ 1,267) individuals were generated within two defined survey regions, in which our data had higher representativity. This study presents a practical approach to synthesize existing population survey data for large-scale population assessments of individually identifiable species. The estimated number represents 11 ~ 21% of the global snow leopard population, indicating high conservation value of this region.
|
|
|
McCarthy, K., Fuller, T., Ming, M., McCarthy, T., Waits, L., & Jumabaev, K. (2008). Assessing Estimators of Snow Leopard Abundance (Vol. 72).
Abstract: The secretive nature of snow leopards (Uncia uncia) makes them difficult to monitor, yet conservation efforts require accurate and precise methods to estimate abundance. We assessed accuracy of Snow Leopard Information Management System (SLIMS) sign surveys by comparing them with 4 methods for estimating snow leopard abundance: predator:prey biomass ratios, capture-recapture density estimation, photo-capture rate, and individual identification through genetic analysis. We recorded snow leopard sign during standardized surveys in the SaryChat Zapovednik, the Jangart hunting reserve, and the Tomur Strictly Protected Area, in the Tien Shan Mountains of Kyrgyzstan and China. During June-December 2005, adjusted sign averaged 46.3 (SaryChat), 94.6 (Jangart), and 150.8 (Tomur) occurrences/km. We used
counts of ibex (Capra ibex) and argali (Ovis ammon) to estimate available prey biomass and subsequent potential snow leopard densities of 8.7 (SaryChat), 1.0 (Jangart), and 1.1 (Tomur) snow leopards/100 km2. Photo capture-recapture density estimates were 0.15 (n = 1 identified individual/1 photo), 0.87 (n = 4/13), and 0.74 (n = 5/6) individuals/100 km2 in SaryChat, Jangart, and Tomur, respectively. Photo-capture rates
(photos/100 trap-nights) were 0.09 (SaryChat), 0.93 (Jangart), and 2.37 (Tomur). Genetic analysis of snow leopard fecal samples provided minimum population sizes of 3 (SaryChat), 5 (Jangart), and 9 (Tomur) snow leopards. These results suggest SLIMS sign surveys may be affected by observer bias and environmental variance. However, when such bias and variation are accounted for, sign surveys indicate relative abundances similar to photo rates and genetic individual identification results. Density or abundance estimates based on capture-recapture or ungulate biomass did not agree with other indices of abundance. Confidence in estimated densities, or even detection of significant changes in abundance of snow leopard, will require more effort and better documentation.
|
|
|
Ming, M., Chundawat R.S., Jumabay, K., Wu, Y., Aizeizi, Q., & Zhu, M. H. (2006). Camera trapping of snow leopards for the photo capture rate and population size in the Muzat Valley of Tianshan Mountains. Acta Theriologica Sinica, 52(4), 788–793.
Abstract: The main purpose of this work was to study the use of infrared trapping cameras to estimate snow leopard Uncia uncia population size in a specific study area. This is the first time a study of this nature has taken place in China. During 71 days of field work, a total of 36 cameras were set up in five different small vales of the Muzat Valley adjacent to the Tomur Nature Reserve in Xinjiang Province, E80ø35' – 81ø00' and N42ø00' – 42ø10', elevation 2'300 – 3'000 m, from 18th October to 27th December 2005. We expended approximately 2094 trap days and nights total (c. 50'256 hours). At least 32 pictures of snow leopards, 22 pictures of other wild species (e.g. chukor, wild pig, ibex, red fox, cape hare) and 72 pictures of livestock were taken by the passive Cam Trakker (CT) train monitor in about 16 points of the Muzat Valley. The movement distance of snow leopard was 3-10 km/day. And the capture rate or photographic rate of snow leopard was 1.53%. Meanwhile, 20 transects were run and 31 feces sample were collected. According to 32 photos, photographic rate and sign survey after snowing on the spot, were about 5-8 individuals of snow leopards in the research area, and the minimum density of snow leopard in Muzat Valley was 2.0 – 3.2 individuals/100 km2. We observed the behavior of ibex for 77.3 hours, and found about 20 groups and a total of approximately 264 ibexes in the research area.
|
|
|
Ming, M., Yun, G., & Bo, W. (2008). Chinese snow leopard team goes into action. Man & the Biosphere, 54(6), 18–25.
Abstract: China, the world's most populous country, also contains the largest number of Snow Leopards of any country in the world. But the survey and research of the snow leopard had been very little for the second half of the 20th century. Until recent years, the members of Xinjiang Snow Leopards Group (XSLG/SLT/XFC) , the Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences have been tracking down the solitary animal. The journal reporter does a face-to-face interview with professor Ma Ming who is a main responsible expert of the survey team. By the account of such conversation, we learn the achievements, advances and difficulty of research of snow leopards in the field, Tianshan and Kunlun, Xinjiang, the far west China, and we also know that why the team adopt the infrared camera to capture the animals. Last but not least professor talked about the survival menace faced by the Snow Leopards in Xinjiang.
|
|
|
Oberosler, V., Tenan, S., Groff, C., Krofel, M., Augugliaro, C., Munkhtsog, B., Rovero, F. (2021). First spatially‐explicit density estimate for a snow leopard population in the Altai Mountains. Biodiversity and Conservation, , 15.
Abstract: The snow leopard Panthera uncia is an elusive and globally-threatened apex predator occurring in the mountain ranges of central Asia. As with other large carnivores, gaps in data on its distribution and abundance still persist. Moreover, available density estimates are often based on inadequate sampling designs or analytical approaches. Here, we used camera trapping across a vast mountainous area (area of the sampling frame 850 km2; analysed habitat extent 2600 km2) and spatially-explicit capture-recapture (SECR) models to provide, to our knowledge, the first robust snow leopard population density estimate for the Altai Mountains. This region is considered one of the most important conservation areas for snow leopards, representing a vast portion of suitable habitat and a key ecological corridor. We also provide estimates of the scale parameter (σ) that reflects ranging behaviour (activity range) and baseline encounter probability, and investigated potential drivers of density and related parameters by assessing their associations with anthropogenic and environmental factors. Sampling yielded 9729 images of snow leopards corresponding to 224 independent detections that belonged to a minimum of 23 identified adult individuals. SECR analysis resulted in an overall density of 1.31 individuals/100 km2 (1.15%–1.50 95% CI), which was positively correlated with terrain slope. This estimate falls within the mid-values of the range of density estimates for the species globally. We estimated significantly different activity range size for females and males (79 and 329 km2, respectively). Base- line encounter probability was negatively associated with anthropogenic activity. Our study contributes to on-going efforts to produce robust global estimates of population abundance for this top carnivore.
|
|
|
Sharma, R. K., Sharma, K., Borchers, D., Bhatnagar, Y. V., Suryawanshi, K. S., Mishra, C. (2020). Spatial variation in population-density, movement and detectability of snow leopards in
2 a multiple use landscape in Spiti Valley, Trans-Himalaya. bioRxiv, .
Abstract: The endangered snow leopard Panthera uncia occurs in human use landscapes in the mountains of South and Central Asia. Conservationists generally agree that snow leopards must be conserved through a land-sharing approach, rather than land-sparing in the form of strictly protected areas. Effective conservation through land-sharing requires a good understanding of how snow leopards respond to human use of the landscape. Snow leopard density is expected to show spatial variation within a landscape because of variation in the intensity of human use and the quality of habitat. However, snow leopards have been difficult to enumerate and monitor. Variation in the density of snow leopards remains undocumented, and the impact of human use on their populations is poorly understood. We examined spatial variation in snow leopard density in Spiti Valley, an important snow leopard landscape in India, via spatially explicit capture recapture analysis of camera trap data. We camera trapped an area encompassing a minimum convex polygon of 953 km . We estimated an overall density of 0.49 (95% CI: 0.39-0.73) adult snow leopards per 100 km . Using AIC, our best model showed the density of snow leopards to depend on wild prey density, movement about activity centres to depend on altitude, and the expected number of encounters at the activity centre to depend on topography. Models that also used livestock biomass as a density covariate ranked second, but the effect of livestock was weak. Our results highlight the importance of maintaining high density pockets of wild prey populations in multiple use landscapes to enhance snow leopard conservation.
|
|
|
Spearing, A. (2002). A Note on the Prospects for Snow Leopard Census Using Photographic Capture.. Islt: Islt.
|
|
|
Zhang, C., Ma, T., Ma, D. (2023). Status of the snow leopard Panthera uncia in the Qilian Mountains, Gansu Province, China. Oryx, , 1–6.
Abstract: Population density estimation is integral to the effective conservation and management of wildlife. The snow leopard Panthera uncia is categorized as Vulnerable on the IUCN Red List, and reliable information on its density is a prerequisite for its conservation and management. Little is known about the status of the snow leopard in the central and eastern Qilian Mountains, China. To address this, we estimated the population density of the snow leopard using a spatially explicit capture–recapture model based on camera trapping in Machang in the central and eastern Qilian Mountains during January–March 2019. We set up
40 camera traps and recorded 84 separate snow leopard captures over 3,024 trap-days. We identified 18 individual snow leopards and estimated their density to be 2.26/100 km. Our study provides baseline information on the snow leopard and the first population estimate for the species in the central and eastern Qilian Mountains.
|
|