|
Ale, S., Shrestha, B., and Jackson, R. (2014). On the status of Snow Leopard Panthera Uncia (Schreber 1775) in Annapurna, Nepal. Journal of Threatened Taxa, (6(3)), 5534–5543.
|
|
|
Aryal, A. (2009). Final Report On Demography and Causes of Mortality of Blue Sheep (Pseudois nayaur) in Dhorpatan Hunting Reserve in Nepal.
Abstract: A total of 206 individual Blue sheep Pseudois nayaur were estimated in Barse and Phagune blocks of Dhorpatan Hunting Reserve (DHR) and population density was 1.8 Blue sheep/sq.km. There was not significant change in population density from last 4 decades. An average 7 animals/herd (SD-5.5) were classified from twenty nine herds, sheep per herds varying from 1 to 37. Blue sheep has classified into sex ratio on an average 75 male/100females was recorded in study area. The sex ratio was slightly lower but not significantly different from the previous study. Population of Blue sheep was seen stable or not decrease even there was high poaching pressure, the reason may be reducing the number of predators by poison and poaching which has
supported to increase blue sheep population. Because of reducing the predators Wolf Canis lupus, Wild boar population was increasing drastically in high rate and we can observed wild boar above the tree line of DHR. The frequency of occurrence of different prey species in scats of different predators shows that, excluding zero values, the frequencies of different prey species were no significantly different (ö2= 10.3, df = 49, p > 0.05). Most of the scats samples (74%) of Snow leopard, Wolf, Common Leopard, Red fox's cover one prey species while two and three species were present in 18% and 8%, respectively. Barking deer Muntiacus muntjak was the most frequent (18%) of total diet composition of common leopards. Pika Ochotona roylei was the most frequent (28%), and Blue sheep was in second position for diet of snow leopards which cover 21% of total diet composition. 13% of diet covered non-food item such as soil, stones, and vegetable. Pika was most frequent on Wolf and Red fox diet which covered 32% and 30% respectively. There was good positive relationship between the scat density and Blue sheep consumption rate, increasing the scat density, increasing the Blue sheep consumption rate. Blue sheep preference by different predators such as Snow leopard, Common leopard, Wolf and Red fox were 20%, 6%, 13% and 2% of total prey species respectively.
|
|
|
Ghoshal, A., Bhatnagar, Y. V., Pandav, B., Sharma, K., Mshra, C. (2017). Assessing changes in distribution of the Endangered snow leopard Panthera uncia and its wild prey over 2 decades in the Indian Himalaya through interviewbased occupancy surveys. Oryx, , 1–13.
Abstract: Understanding species distributions, patterns of
change and threats can form the basis for assessing the conservation
status of elusive species that are difficult to survey.
The snow leopard Panthera uncia is the top predator of the
Central and South Asian mountains. Knowledge of the distribution
and status of this elusive felid and its wild prey is
limited. Using recall-based key-informant interviews we estimated
site use by snow leopards and their primary wild
prey, blue sheep Pseudois nayaur and Asiatic ibex Capra
sibirica, across two time periods (past: �; recent:
�) in the state of Himachal Pradesh, India. We
also conducted a threat assessment for the recent period.
Probability of site use was similar across the two time periods
for snow leopards, blue sheep and ibex, whereas for wild
prey (blue sheep and ibex combined) overall there was an
% contraction. Although our surveys were conducted in
areas within the presumed distribution range of the snow
leopard, we found snow leopards were using only % of
the area (, km). Blue sheep and ibex had distinct distribution
ranges. Snow leopards and their wild prey were not
restricted to protected areas, which encompassed only %
of their distribution within the study area. Migratory livestock
grazing was pervasive across ibex distribution range
and was the most widespread and serious conservation
threat. Depredation by free-ranging dogs, and illegal hunting
and wildlife trade were the other severe threats. Our
results underscore the importance of community-based, landscape-
scale conservation approaches and caution against reliance
on geophysical and opinion-based distribution maps that have been used to estimate national and global snow leopard ranges.
|
|
|
Hanson, J. H., Schutgens, M., Lama, R.P., Aryal, A., Dhakal, M. (2018). Local attitudes to the proposed translocation of blue sheep Pseudois nayaur to Sagarmatha National Park, Nepal. Fauna & Flora International, , 1–7.
Abstract: Translocations are an important tool for the conservation
of biodiversity, but although ecological feasibility
studies are frequently conducted prior to implementation,
social feasibility studies that consider how local communities
perceive such projects are less common. The translocation
of blue sheep Pseudois nayaur to Sagarmatha National
Park, Nepal, has been proposed, to reduce livestock depredation
by snow leopards Panthera uncia by providing an alternative
prey base in addition to the small population of
Himalayan thar Hemitragus jemlahicus. This study used
systematic sampling, a quantitative questionnaire and qualitative
interviews within the Park to provide data on the social
viability of the proposed translocation. Quantitative
analysis revealed moderate levels of support but qualitative
analysis suggested that there are significant concerns about
the proposal. In addition,multiple regression analysis found
that women and livestock owners were significantly less
supportive, although the model had low explanatory
power. Potential crop damage and competition for forage
were frequently cited as concerns, especially amongst
those with a high level of dependence on natural resources.
Given the mixed response to the proposed translocation of
blue sheep to the Everest region, alleviating the reservations
of local residents is likely to be key to any further consultation,
planning or implementation.
|
|
|
Harris, R. B., Pletscher, D. H., Loggers, C. O., & Miller, D. J. (1999). Status and trends of Tibetan plateau mammalian fauna, Yeniugou, China. Biological Conservation, 87, 13–19.
Abstract: We conducted surveys focusing on the unique and vulnerable ungulate species in Yeniugou, Qinghai province, China, during September 1997 to compare population estimates with those from the early 1990s. The status of two ungulate species appeared essentially unchanged since 1990ñ1992: wild yak Bos grunniens (about 1200 to 1300 animals) and Tibetan gazelle Procapra picti- caudata. The status of one ungulate species, the white-lipped deer Cervus albirostris, appeared to improve, from a very few to close to 100. We are unsure how the status of the Tibetan wild ass Equus kiang compares with that of the early 1990s. The status of three species declined during the period: blue sheep Pseudois nayaur and argali Ovis ammon declined slightly (possibly due to a weather event), and the Tibetan antelope Pantholops hodgsoni declined dramatically (probably due primarily to poaching), from over 2000 estimated in 1991 to only two seen during 1997. Poaching of antelope has become a serious problem throughout the Tibetan plateau in recent years, and this survey provides evidence that an entire subpopulation can disappear (either through mortality, movement away from human disturbance or a combination) within a relatively short time-frame. That some species (e.g. wild yak, white-lipped deer) continue to thrive in Yeniugou is heartening, but even they remain vulnerable to market-driven poaching.#1998 Elsevier Science Ltd. All rights reserved.
|
|
|
Khatiwada, J. R., Chalise, M. K., & Kyes, R. (2007). Survey of Snow Leopard (Uncia uncia) and Blue Sheep (Pseudois nayaur) populations in the Kangchenjunga Conservation Area (KCA), Nepal. Final report.
Abstract: This study was carried out in the Kangchenjunga Conservation Area (KCA), Eastern Nepal from Feb – Nov 2007. We used the Snow Leopard Information Management System, SLIMS (second order survey technique) to determine the relative abundance of snow leopard in the upper part of KCA. Altogether, 36 transects (total length of 15.21 km) were laid down in the major three blocks of KCA. 104 Signs (77 scrapes, 20 feces, 2 Scent mark, 3 Pugmarks and 2 hairs) were recorded. Fixed-point count method was applied for blue sheep from appropriate vantage points. We counted total individual in each herd using 8x42 binocular and 15-60x spotting scope. A total of 43 herds and 1102 individuals were observed in the area. The standard SLIMS questionnaire was conducted to find out relevant information on livestock depredation patterns. Out of 35 households surveyed in KCA, 48% of herders lost livestock due to snow leopards. A total of 21 animals were reportedly lost due to snow leopards from August to September 2007.
|
|
|
Khatiwada, J. R. & C., M.K. (2006). Status of snow leopard and conflict perception in Kangchenjunga Conservation Area, Eastern Nepal. Nepalese Journal of Zoology, 1(1), 1–8.
Abstract: Kangchenjunga Conservation Area (KCA) is situated in the Taplejung district at the north-eastern region of Nepal. Livestock keeping is the main activity of people for making a living amidst a conflict with snow leopard (Uncia uncia). Each year snow leopard kills a number of livestock resulting significant economic losses for the poor people living in this remote area. Unless the people – snow leopard conflicts is well understood and appropriate conflict management activities are implemented, the long run co-existence between people and snow leopard –especially the existence of snow leopard in this part of the world–will be in question. This has now become an utmost important as the aspiration of the people for economic development has risen significantly and the area has been open to tourism. Study was done by counting snow leopard signs walking systematically in total 18 snow leopard sign transects covering 18.01 km in length in three sites, i.e. Lonak, Khambachen and Dudhpokhari of the Conservation Area. The average sign density was 12.63/km. The livestock depredation by snow leopard for one year (2005-06) was studied by interviewing the herders to understand the responsible and specific bio-physical and economic factors. The study revealed that sub-adult yaks were mostly hunted by snow leopard. Cattle's' winter (December-April) pastures are most vulnerable sites for predation. Presence of bushes, forest and boulders and rugged mountain crevices make good hides for snow leopard. The study also showed that a lax animal guarding system was significantly responsible for high livestock depredation by snow leopard. Blue sheep was observed by walking in selected trails and from vantage points. A total of 354 individual sheep of different age and sex of 14 different herds were recorded during the study period. The study showed that improvement in livestock guarding system should be adopted as the most important activity. However despite the importance of livestock in the KCA it is still not well understood why the herders neglect for proper livestock guarding. Proper guarding system required in winter pastures to reduce the depredation pressure.
|
|
|
Kohli, K., Sankaran, M., Suryawanshi, K. R., Mishra, C. (2014). A penny saved is a penny earned: lean season foraging strategy of an alpine ungulate. Animal Behaviour, (92), 93–100.
Abstract: Lean season foraging strategies are critical for the survival of species inhabiting highly seasonal environments
such as alpine regions. However, inferring foraging strategies is often difficult because of
challenges associated with empirically estimating energetic costs and gains of foraging in the field. We
generated qualitative predictions for the relationship between daily winter foraging time, body size and
forage availability for three contrasting foraging strategies including time minimization, energy intake
maximization and net energy maximization. Our model predicts that for animals employing a time
minimization strategy, daily winter foraging time should not change with body size and should increase
with a reduction in forage availability. For energy intake maximization, foraging time should not vary
with either body size or forage availability. In contrast, for a net energy maximization strategy, foraging
time should decrease with increase in body size and with a reduction in forage availability. We contrasted
proportion of daily time spent foraging by bharal, Pseudois nayaur, a dimorphic grazer, across
different body size classes in two high-altitude sites differing in forage availability. Our results indicate
that bharal behave as net energy maximizers during winter. As predicted by the net energy maximization
strategy, daily winter foraging time of bharal declined with increasing body size, and was lower in the
site with low forage availability. Furthermore, as predicted by our model, foraging time declined as the
winter season progressed. We did not find support for the time minimizing or energy intake maximizing
strategies. Our qualitative model uses relative rather than absolute costs and gains of foraging which are
often difficult to estimate in the field. It thus offers a simple way to make informed inferences regarding
animal foraging strategies by contrasting estimates of daily foraging time across gradients of body size
and forage availability.
|
|
|
Lu, Q., Xiao, L., Cheng, C., Lu, Z., Zhao, J., Yao, M. (2021). Snow Leopard Dietary Preferences and Livestock Predation Revealed by Fecal DNA Metabarcoding: No Evidence for Apparent Competition Between Wild and Domestic Prey. Frontiers in Ecology and Evolution, 9(783546), 1–14.
Abstract: Accurate assessments of the patterns and drivers of livestock depredation by wild carnivores are vital for designing effective mitigation strategies to reduce human-wildlife conflict. Snow leopard’s (Panthera uncia) range extensively overlaps pastoralist land- use and livestock predation there is widely reported, but the ecological determinants of livestock consumption by snow leopards remain obscure. We investigated snow leopard dietary habits at seven sites across the Sanjiangyuan region of the Qinghai– Tibetan Plateau (QTP), an area central to the species’ global range. Snow leopard abundance, wild prey composition, and livestock density varied among those sites, thus allowing us to test the effects of various factors on snow leopard diet and livestock predation. Using DNA metabarcoding, we obtained highly resolved dietary data from 351 genetically verified snow leopard fecal samples. We then analyzed the prey preferences of snow leopards and examined ecological factors related to their livestock consumption. Across the sites, snow leopard prey was composed mainly of wild ungulates (mean = 81.5% of dietary sequences), particularly bharal (Pseudois nayaur), and supplemented with livestock (7.62%) and smaller mammals (marmots, pikas, mice; 10.7%). Snow leopards showed a strong preference for bharal, relative to livestock, based on their densities. Interestingly, both proportional and total livestock consumption by snow leopards increased linearly with local livestock biomass, but not with livestock density. That, together with a slight negative relationship with bharal density, supports apparent facilitation between wild and domestic prey. We also found a significant positive correlation between population densities of snow leopard and bharal, yet those densities showed slight negative relationships with livestock density. Our results highlight the importance of sufficient wild ungulate abundance to the conservation of viable snow leopard populations. Additionally, livestock protection is critically needed to reduce losses to snow leopard depredation, especially where local livestock abundances are high.
|
|
|
Mishra, C., Van Wieren S., Ketner, P., Heitkonig, I., & Prins H. (2004). Competition between domestic livestock and wild bharal Pseudois nayaur in the Indian Trans-Himalaya. Journal of Animal Ecology, 73, 344–354.
Abstract: 1. The issue of competition between livestock and wild herbivores has remained contentious. We studied the diets and population structures of the mountain ungulate bharal Pseudois nayaur and seven species of livestock to evaluate whether or not they compete for forage. The study was conducted in the high altitude Spiti Valley, Indian Trans-Himalaya.
2. We compared resource (forage) availability and bharal population structures between rangelands differing in livestock density. Forage availability was estimated by clipping the standing graminoid biomass in sample plots. Livestock and bharal population structures were quantified through annual censuses. Seasonal diets of livestock were studied by direct observations, while those of bharal were quantified through feeding
signs on vegetation.
3. We found that livestock grazing causes a significant reduction in the standing crop of forage. Graminoid availability per unit livestock biomass was three times greater in a moderately grazed rangeland compared with an intensively grazed one.
4. There was considerable diet overlap among the herbivore species. In summer, bharal, yak Bos grunniens, horse Equus caballus, cow Bos indicus, and dzomo (yak-cow hybrids) fed predominantly on graminoids, while donkey E. asinus, sheep Ovis aries, and goat Capra hircus, consumed both graminoids and herbs. The summer diet of bharal was a subset of the diets of three livestock species. In winter, depleted graminoid availability caused bharal, yak and horse to consume relatively more herbs, while the remaining livestock species fed predominantly on graminoids. Diet overlap was less in winter but, in both seasons, all important forage species in the bharal diet were consumed
in substantial amounts by one or more species of livestock.
5. Comparison of the population structures of bharal between two rangelands differing in livestock density by
c. 30% yielded evidence of resource competition. In the intensively grazed rangeland, bharal density was 63% lower, and bharal population showed poorer performance (lower young : adult female ratios).
6.Synthesis and applications High diet overlap between livestock and bharal, together with density-dependent forage limitation, results in resource competition and a decline in bharal density. Under the present conditions of high livestock density and supplemental feeding, restricting livestock numbers and creating livestockfree areas are necessary measures for conserving Trans-Himalayan wild herbivores. Mediating competitive effects on bharal through supplemental feeding is not a feasible option.
|
|