|
Christiansen, P. (2007). Canine morphology in the larger Felidae: implications for feeding ecology. Biological Journal of the Linnean Society, 91, 573–592.
Abstract: Canine morphology is analysed at seven intervals along the crown in both
anteroposterior and lateromedial perspective in seven species of large felids. The puma and the snow leopard have stout, rather conical canines, whereas those of lions, jaguars, and tigers bear substantial resemblance to each other, reflecting their phylogenetic relationships, and are less conical and large. The canines of the leopard are intermediate in morphology between those of the other species, probably reflecting its more generalized diet. The clouded leopard has very large and blade-like canines, which are different from the other analysed species. Canine bending strengths to estimated bite forces appear to differ less among the species than morphology,indicating that the evolution of canines has been constricted with respect to their strength in failure, probably owing to their being equally important for species fitness. However, the clouded leopard again stands out, having a high estimated bite force and rather weak canines in bending about the anteroposterior as well as lateromedial planes compared to the other species. Canine morphology to some extent reflects differences in killing mode, but also appears to be related to the phylogeny. The marked divergence of the clouded leopard is presently not understood.
Keywords: bite force, canine, clouded leopard, feeding behaviour, felid, Homotherium serum, leopard, Megantereoncultridens, morphology, Neofelis nebulosa, paleontology, Panthera pardus, Panthera tigris, puma, Puma concolor, Smilodon fatalis, Smilodon populator, snow leopard, Uncia uncia
|
|
|
Schmidt, A. M., Hess, D. L., Schmidt, M. J., Smith, R. C., & Lewis, C. R. (1988). Serum concentrations of oestradiol and progesterone, and sexual behaviour during the normal oestrous cycle in the leopard (Panthera pardus) (Vol. 82).
Abstract: Three mature nulliparous female leopards were studied for 5 years. During three separate 6-month periods serum oestradiol and progesterone concentrations were measured at weekly intervals. Oestradiol was elevated over 21 pg/ml for 54 weeks during these 3 periods, and 36 oestradiol peaks (65\m=.\8\m=+-\6\m=.\3pg/ml (mean \m=+-\s.e.m.), range 21\p=n-\172pg/ml) were identified. Daily frequency of feline reproductive behaviours averaged over each week increased from 1\m=.\9\m=+-\0\m=.\2(n = 93) during weeks with low serum oestradiol concentrations (<21 pg/ml) to 5\m=.\3\m=+-\0\m=.\6(n = 54) during weeks when serum oestradiol concentrations (>21 pg/ml) were high. Increased serum progesterone concentrations (13\p=n-\98n/gml) were observed on 5 occasions in 2 leopards housed together. These presumptive luteal phases lasted from 1 to 5 weeks. Baseline progesterone values were 1\m=.\6\m=+-\0\m=.\4 ng/m(nl= 131). No progesterone increments were observed in isolated animals, and serum concentrations remained at baseline levels. These limited observations suggest that female leopards do not require intromission to induce ovulation and luteal function. The average interval between oestradiol peaks for cycles with no progesterone increment was 3\m=.\4weeks (range 1\p=n-\6weeks). The interval for the 3 complete cycles associated with elevated progesterone concentrations was 7\m=.\3weeks. Analysis of sexual behaviours over the 5-year study period revealed no evidence of seasonality in these
captive leopards.
|
|
|
Slifka, K., Stacewicz-Sapuntzakis, S. M., Bowen, P., & Crissey, S. (1999). A Survey of Serum and Dietary Carotenoids in Captive Wild Animals. The Journal of Nutrition, 129, 380–390.
Abstract: Accumulation of carotenoids varies greatly among animal species and is not fully characterized.
Circulating carotenoid concentration data in captive wild animals are limited and may be useful for their management.
Serum carotenoid concentrations and dietary intakes were surveyed and the extent of accumulation
categorized for 76 species of captive wild animals at Brookfield Zoo. Blood samples were obtained opportunistically
from 275 individual animals immobilized for a variety of reasons; serum was analyzed for a- and b-carotene,
lutein 1 zeaxanthin, lycopene, b-cryptoxanthin and canthaxanthin. Total carotenoid content of diets was calculated
from tables and chemical analyses of commonly consumed dietary components. Diets were categorized as
low, moderate or high in carotenoid content as were total serum carotenoid concentrations. Animals were
classified as unknown, high, moderate or low (non-) accumulators of dietary cartenoids. Nonaccumulators had total
serum carotenoid concentrations of 0-101 nmol/L, whereas accumulators had concentrations that ranged widely,
from 225 to 35,351 nmol/L. Primates were uniquely distinguished by the widest range of type and concentration
of carotenoids in their sera. Most were classified as high to moderate accumulators. Felids had high accumulation
of b-carotene regardless of dietary intake, whereas a wide range of exotic birds accumulated only the xanthophylls,
lutein 1 zeaxanthin, canthaxanthin or cryptoxanthin. The exotic ungulates, with the exception of the bovids, had
negligible or nondetectable carotenoid serum concentrations despite moderate intakes. Bovids accumulated only
b-carotene despite moderately high lutein 1 zeaxanthin intakes. Wild captive species demonstrated a wide variety
of carotenoid accumulation patterns, which could be exploited to answer remaining questions concerning carotenoid
metabolism and function.
|
|