|
Kashkarov, E. (2017). THE SNOW LEOPARD OF KIRGIZIA: NATIONAL SHAME OR NATIONAL PRIDE.239–253.
Abstract: Article examines the problems existing in conservation of the snow leopard in Kirgizia after break-up of the
USSR. Unfortunate situation is common to most of the 14 countries in the snow leopard range, but seems
especially sharp to Kirgizia. Yet half of the century ago Kirgizia has had about 1.5 thousand of the snow
leopards, and today there remains no more than 1/10. In Soviet time Kirgizia was a global supplier of the
snow leopards for the zoo-export � to create a reserve number of endangered cats in captivity. Today, at
least half of the snow leopards in the Zoos of the world are individuals, caught in Kirgizia or their
descendants.
Since independence, Kirgizia has set new records. In Sarychat-Irtash reserve � the best for the snow
leopard in Central Asia, and probably in the whole range � this species was completely destroyed after 3
years of reserve opening... and 17 years later � revived... Situation comes presently back to the worst-case
scenario, and not only for the snow leopard. Author shows how work in this direction social and economic
levers, and what kind future he would like to see in Kirgizia, where he lived for 12 years and was at the
forefront of pioneering research of the snow leopard and its conservation.
Keywords: snow leopard, irbis, ibex, mountain sheep, conservation, range, reserve, monitoring, cameratrap, Sarychat, Kirgizia, Central Asia.
|
|
|
McCarthy, K., Fuller, T., Ming, M., McCarthy, T., Waits, L., & Jumabaev, K. (2008). Assessing Estimators of Snow Leopard Abundance (Vol. 72).
Abstract: The secretive nature of snow leopards (Uncia uncia) makes them difficult to monitor, yet conservation efforts require accurate and precise methods to estimate abundance. We assessed accuracy of Snow Leopard Information Management System (SLIMS) sign surveys by comparing them with 4 methods for estimating snow leopard abundance: predator:prey biomass ratios, capture-recapture density estimation, photo-capture rate, and individual identification through genetic analysis. We recorded snow leopard sign during standardized surveys in the SaryChat Zapovednik, the Jangart hunting reserve, and the Tomur Strictly Protected Area, in the Tien Shan Mountains of Kyrgyzstan and China. During June-December 2005, adjusted sign averaged 46.3 (SaryChat), 94.6 (Jangart), and 150.8 (Tomur) occurrences/km. We used
counts of ibex (Capra ibex) and argali (Ovis ammon) to estimate available prey biomass and subsequent potential snow leopard densities of 8.7 (SaryChat), 1.0 (Jangart), and 1.1 (Tomur) snow leopards/100 km2. Photo capture-recapture density estimates were 0.15 (n = 1 identified individual/1 photo), 0.87 (n = 4/13), and 0.74 (n = 5/6) individuals/100 km2 in SaryChat, Jangart, and Tomur, respectively. Photo-capture rates
(photos/100 trap-nights) were 0.09 (SaryChat), 0.93 (Jangart), and 2.37 (Tomur). Genetic analysis of snow leopard fecal samples provided minimum population sizes of 3 (SaryChat), 5 (Jangart), and 9 (Tomur) snow leopards. These results suggest SLIMS sign surveys may be affected by observer bias and environmental variance. However, when such bias and variation are accounted for, sign surveys indicate relative abundances similar to photo rates and genetic individual identification results. Density or abundance estimates based on capture-recapture or ungulate biomass did not agree with other indices of abundance. Confidence in estimated densities, or even detection of significant changes in abundance of snow leopard, will require more effort and better documentation.
|
|