|
Ale, S., & Brown, J. (2007). The contingencies of group size and vigilance (Vol. 9).
Abstract: Background: Predation risk declines non-linearly with one's own vigilance and the vigilance of others in the group (the 'many-eyes' effect). Furthermore, as group size increases, the individual's risk of predation may decline through dilution with more potential victims, but may increase if larger groups attract more predators. These are known, respectively, as the dilution effect and the attraction effect.
Assumptions: Feeding animals use vigilance to trade-off food and safety. Net feeding rate declines linearly with vigilance.
Question: How do the many-eyes, dilution, and attraction effects interact to influence the relationship between group size and vigilance behaviour?
Mathematical methods: We use game theory and the fitness-generating function to determine the ESS level of vigilance of an individual within a group.
Predictions: Vigilance decreases with group size as a consequence of the many-eyes and dilution effects but increases with group size as a consequence of the attraction effect, when they act independent of each other. Their synergetic effects on vigilance depend upon the relative strengths of each and their interactions. Regardless, the influence of other factors on vigilance – such as encounter rate with predators, predator lethality, marginal value of energy, and value of vigilance – decline with group size.
|
|
|
Anonymous. (1999). Snow Leopard Undergoes Hip Replacement Surgery. Feline-Practice, 27(4), 5.
|
|
|
Aryal, A. (2009). Final Report On Demography and Causes of Mortality of Blue Sheep (Pseudois nayaur) in Dhorpatan Hunting Reserve in Nepal.
Abstract: A total of 206 individual Blue sheep Pseudois nayaur were estimated in Barse and Phagune blocks of Dhorpatan Hunting Reserve (DHR) and population density was 1.8 Blue sheep/sq.km. There was not significant change in population density from last 4 decades. An average 7 animals/herd (SD-5.5) were classified from twenty nine herds, sheep per herds varying from 1 to 37. Blue sheep has classified into sex ratio on an average 75 male/100females was recorded in study area. The sex ratio was slightly lower but not significantly different from the previous study. Population of Blue sheep was seen stable or not decrease even there was high poaching pressure, the reason may be reducing the number of predators by poison and poaching which has
supported to increase blue sheep population. Because of reducing the predators Wolf Canis lupus, Wild boar population was increasing drastically in high rate and we can observed wild boar above the tree line of DHR. The frequency of occurrence of different prey species in scats of different predators shows that, excluding zero values, the frequencies of different prey species were no significantly different (ö2= 10.3, df = 49, p > 0.05). Most of the scats samples (74%) of Snow leopard, Wolf, Common Leopard, Red fox's cover one prey species while two and three species were present in 18% and 8%, respectively. Barking deer Muntiacus muntjak was the most frequent (18%) of total diet composition of common leopards. Pika Ochotona roylei was the most frequent (28%), and Blue sheep was in second position for diet of snow leopards which cover 21% of total diet composition. 13% of diet covered non-food item such as soil, stones, and vegetable. Pika was most frequent on Wolf and Red fox diet which covered 32% and 30% respectively. There was good positive relationship between the scat density and Blue sheep consumption rate, increasing the scat density, increasing the Blue sheep consumption rate. Blue sheep preference by different predators such as Snow leopard, Common leopard, Wolf and Red fox were 20%, 6%, 13% and 2% of total prey species respectively.
|
|
|
Bhatia, S., Suryawanshi, K., Redpath, S. M., Mishra, C. (2020). Understanding people's responses toward predators in the Indian Himalaya. Animal Conservation, , 1–8.
Abstract: Research on human–wildlife interactions has largely focused on the magnitude of wildlife‐caused damage, and the patterns and correlates of human attitudes and behaviors. We assessed the role of five pathways through which various correlates potentially influence human responses toward wild animals, namely, value orientation, social interactions (i.e. social cohesion and support), dependence on resources such as agriculture and livestock, risk perception and nature of interaction with the wild animal. We specifically evaluated their influence on people's responses toward two large carnivores, the snow leopard Panthera uncia and the wolf Canis lupus in an agropastoral landscape in the Indian Trans‐Himalaya. We found that the nature of the interaction (location, impact and length of time since an encounter or depredation event), and risk perception (cognitive and affective evaluation of the threat posed by the animal) had a significant influence on attitudes and behaviors toward the snow leopard. For wolves, risk perception and social interactions (the relationship of people with local institutions and inter‐community dynamics) were significant. Our findings underscore the importance of interventions that reduce people's threat perceptions from carnivores, improve their connection with nature and strengthen the conservation capacity of local institutions especially in the context of wolves.
|
|
|
Chundawat, R. S. (1993). Studies on Snow Leopard and Prey Species in Hemis National Park (Vol. xi). Seattle: Islt.
|
|
|
Fedosenko A.K. (1979). Relationship between the predators and wild ungulates in North Tien Shan and Jungar Alatau.
Abstract: Ibex is a main prey for snow leopards. The role of marmots and snow cocks in snow leopard's consumption is negligent. It can prey on morals in the fir-wood. A case of snow leopard's attacking a dog is also known.
|
|
|
Ferretti, F., Lovari, S., Minder, I., Pellizzi, B. (2014). Recovery of the snow leopard in Sagarmatha (Mt.Everest) National Park: effects on main prey. European Journal of Wildlife Research, (60), 559–562.
Abstract: Consequences of predation may be particularly
heavy on small populations of herbivores, especially if they
are threatened with extinction. Over the 2006–2010 period, we
documented the effects of the spontaneous return of the endangered
snow leopard on the population of the vulnerable
Himalayan tahr. The study area was an area of central
Himalaya where this cat disappeared c. 40 years before, because
of persecution by man. Snow leopards occurred mainly
in areas close to the core area of tahr distribution. Tahr was the
staple (56.3 %) of snow leopards. After the arrival of this cat,
tahr decreased by more than 2/3 from 2003 to 2010 (mainly
through predation on kids). Subsequently, the density of snow
leopards decreased by 60%from2007 to 2010. The main prey
of snow leopards in Asia (bharal, marmots) were absent in our
study area, forcing snow leopards to specialize on tahr. The
restoration of a complete prey spectrum should be favoured
through reintroductions, to conserve large carnivores and to
reduce exploitation of small populations of herbivores, especially
if threatened.
|
|
|
Fox, J. L. (1997). Conflict between predators and people in Ladakh. Cat News, 17, 18.
Abstract: During a six-week period in Hemis National Park, Ladakh, India, snow leopards killed 10 sheep and goats and one leopard gained access to a livestock pen and killed many of the animals inside. Dholes also killed sheep and goats, and a wolf killed a young horse. Residents routinely remove snow leopard cubs from their dens to limit future damage by this species. How to deal with the plight of the people living in the area while still protecting the endangered species are major concerns of the International Snow Leopard Trust, which manages Hemis National Park. lgh.
|
|
|
Guerrero, D. (1998). Animal behavior concerns & solutions: snow leopard (Uncia uncia) evaluation, zoo. Anim.Keepers' Forum, 25(2), 56–58.
Abstract: The author offers advice on how a captive-raised snow leopard cub could be acclimated to humans so it could be used as a zoo “ambassador”. The cub had negative experiences with humans and lacked socialization with other animals and conspecifics. Methods of avoiding and redirecting the cub's aggressive behavior are suggested. lgh.
|
|
|
Hanson, J. H., Schutgens, M., Baral, N. What explains tourists support for snow leopard conservation in the Annapurna Conservation Area, Nepal? Human Dimensions of Wildlife, , 1–15.
Abstract: Wildlife tourism is increasingly important for the conservation of
threatened species such as snow leopards. However, what tourists
know or value about snow leopards, and to what extent they support
the conservation of this species, has received limited empirical attention.
This paper investigates tourist knowledge about snow leopards,
beliefs and values toward the species, and support for its conservation
in the Annapurna Conservation Area of Nepal. Survey data were
collected from 406 foreign tourists between March and May 2014.
Although knowledge about snow leopards varied among respondents,
there was widespread support for their conservation.
Knowledge about snow leopards was best explained by education
level and environmental organization membership. Improved knowledge
about the species, and a variety of intrinsic conservation values,
were found to increase tourist support for snow leopard conservation.
These results provide important insights to help tailor tourism
initiatives to support the conservation of snow leopards.
|
|
|
International Snow Leopard Trust. (1999). Snow Leopard News. Seattle, WA: Islt.
|
|
|
International Snow Leopard Trust. (2000). Snow Leopard News Spring 2000. Seattle, Wa: Islt.
|
|
|
Jackson, P. (1998). Villagers save predatory snow leopard. Cat News, 28, 12.
Abstract: A short report is presented on the capture and relocation of a snow leopard in northern Pakistan. Villagers discovered the leopard attacking their goats and captured it. WWF-Gilgit relocated the leopard to a remote area. slj.
|
|
|
Jackson, R. (2004). Pakistan's Community-based Trophy Hunting Programs and Their Relationship to Snow Leopard Conservation.
Abstract: In June-July 2004, the Snow Leopard Conservancy (SLC) recently conducted field visits to three important snow leopard sites in Pakistan's Northern Areas: Hushey and Skoyo villages in Baltistan and the Khunjerab Village Organization (KVO) in Gojal. The purpose was to launch environmentally appropriate small-scale, village-based conservation and depredation alleviation initiatives aimed at protecting snow leopards, prey species, their habitats and associated mountain biodiversity, while benefiting humans at the same time.
|
|
|
Jackson, R. M., Ahlborn, G., Gurung, M., & Ale, S. (1996). Reducing livestock depredation losses in the Nepalese Himalaya. Proc.Vertebr.Pest Conf, 17, 241–247.
Abstract: The authors investigated livestock depredation patterns of snow leopards on the northern slopes of the Himalayans near the villages of Manang and Khangshar, Nepal. Information is discussed on the relationships among livestock loss, endangered species management, public relations/conservation issues, and cooperative efforts among institutions involved in the decision making process. A plan is devised for alleviating livestock loss and protecting endangered species in the area. pcp
|
|
|
Koju, N. P., Gosai, K. R., Bashyal, B., Byanju, R., Shrestha, A., Buzzard, P., Beisch, W. B., Khanal, L. (2023). Seasonal Prey Abundance and Food Plasticity of the Vulnerable Snow Leopard (Panthera uncia) in the Lapchi Valley, Nepal Himalayas. Animals, 13(3182), 1–16.
Abstract: Conservation strategies for apex predators, like the snow leopard (Panthera uncia), depend on a robust understanding of their dietary preferences, prey abundance, and adaptability to changing ecological conditions. To address these critical conservation concerns, this study presents a comprehensive evidence on prey availability and preferences for snow leopards in the Lapchi Valley in the Nepal Himalayas from November 2021 to March 2023. Field data were collected through the installation of twenty-six camera traps at 16 strategically chosen locations, resulting in the recording of 1228 events of 19 mammalian species, including domesticated livestock. Simultaneously, the collection of twenty snow leopard scat samples over 3800 m above sea level allowed for a detailed dietary analysis. Photo capture rate index and biomass composition analysis were carried out and seasonal prey availability and consumption were statistically analyzed. A total of 16 potential prey species for the snow leopard were documented during the study period. Himalayan musk deer (Moschus leucogaster) was the most abundant prey species, but infrequent in the diet suggesting that are not the best bet prey for the snow leopards. Snow leopards were found to exhibit a diverse diet, consuming eleven prey species, with blue sheep (Pseudois nayaur) being their most consumed wild prey and horses as their preferred livestock. The Pianka’s index of dietary niche overlap between the summer and winter seasons were 0.576, suggesting a pronounced seasonal variation in food preference corroborating with the prey availability. The scarcity of larger preys in winter is compensated by small and meso-mammals in the diet, highlighting the snow leopard’s capacity for dietary plasticity in response to the variation in resource availability. This research suggests for the utilization of genetic tools to further explore snow leopard diet composition. Additionally, understanding transboundary movements and conducting population assessments will be imperative for the formulation of effective conservation strategies.
|
|
|
Mainka, S. A. (1988). Revision of a Total Hip Replacement in a Snow Leopard. In H.Freeman (Ed.),. Usa: ISLT and Wildlife Institute of India.
|
|
|
McCarthy, T., Breitenmoser, U., & Breitenmoser-Wursten, C. (2008). A king of snow peaks, another endangered flagship species. Man & the Biosphere, 54(6), 1.
Abstract: The preface of this journal mainly introduces the distribution areas and present living situation of the Snow Leopards. For saving the endangered and solitary mountain species, The Snow Leopard Trust is a leader in effort to secure the future of the felines, besides the authors emphasize that China plays great important role in the protection, because among the snow leopards range countries, China has the most habit and is believed to harbor the largest number of snow leopard.
|
|
|
Ming, M., Yun, G., & Bo, W. (2008). Man & the Biosphere: The special series for the conservation of Snow Leopards in China (Vol. 54).
Abstract: The Chinese magazine <Man & the Biosphere> (Series No. 54, No. 6, 2008) -- A special series for the conservation of Snow Leopards was published by the Chinese National Committee for Man & the Biosphere in 15th December 2008. It is about 80 pages including ten articles with 200 color pictures. The special editors of this issue are the experts from SLT/XCF Prof. MaMing, Mrs. Ge Yun and Mr. Wen Bo. The first paper is “A King of Snow Peaks, Another Endangered Flagship Species” by Dr. Thomas McCarthy, Dr. Urs Breitenmmoser and Dr. Christine Breitenmoser-Wursten (Page 1-1). Another paper “ Conservation : Turning Awareness to Action ” is also from Dr. Thomas McCarthy (Pages from 6-17). There are four articles including the diary and story of the Surveys in Tomur Mountain and Kunlun Mountains written by Prof. MaMing, Mr. XuFeng, Miss Chen Ying and Miss Cheng Yun from the Xinjiang Snow Leopard Group and XCF, the Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences. The last is “Snow Leopard Enterprises ” -- A Story from Mongolia by Mrs. Jennifer Snell Rullman and Mrs. Agvaantseren Bayarjargal (Bayara). It is a very useful copy for the conservation in China. Cited as:
Ma Ming, GeYun and WenBo (Special editors of this issue). 2008. The special series for the conservation of Snow Leopards in China. Man & the Biosphere 2008(6): 1-80. Contents 1, A king of snow peaks, another endangered flagship species (Synopsis) ------------- 1-1 The contents --------------------------------------------- ( pages from 2-3 )
2, Protecting Snow Leopard means protecting a healthy eco-systems -------------- 4-5
3, Conservation: Turning awareness into action -------------- 6-17
4, Chinese Snow Leopard Team goes into action -------------- 18-25
5, A diary of infrared photography -------------- 26-35
6, Why have the snow leopards in the Tianshan Mountains begun to attack livestock? --- 36-43
7, The mystery of the Snow Leopards coming down the Tianshan Mountains ----------- 44-45
8, Snow leopards secluded Home on the Plateau ------------- 46-59
9, He saw Snow Leopards 30 years ago ------------- 60-69
10, Snow Leopard Enterprises -- A story from Mongolia ------------- 70-80
|
|
|
Mishra, C., Young, J. C., Fiechter, M., Rutherford, B., Redpath, S. M. (2017). Building partnerships with communities for biodiversity conservation: lessons from Asian mountains. Journal of Applied Ecology, , 1–9.
Abstract: Applied ecology lies at the intersection of human societies and natural systems. Consequently, applied ecologists are constantly challenged as to how best to use ecological knowledge to influence the management of ecosystems (Habel et al. 2013). As Hulme (2011) has pointed out, to do so effectively we must leave our ivory towers and engage with stakeholders. This engagement is especially important and challenging in areas of the world where poverty, weak institutions and poor governance structures conspire to limit the ability of local communities to contribute to biodiversity conservation. These communities often bear disproportionate costs in the form of curtailed access to natural resources, ecosystem services, and developmental
programmes, and also suffer wildlife-caused damage, including injuries or loss of human life, and economic
and psychological impacts (Madhusudan & Mishra 2003). It is well-recognized that conservation efforts in large parts of the world historically have been perceived to be discriminatory by local people (Mishra 2016). The need for engagement with local communities is therefore embedded in the 2020 Aichi biodiversity targets and is widely thought to be critical to the success of conservation efforts. However, although the need for engagement is clear, as ecologists and practitioners we often have little formal training in how we should engage with local communities and how we can recognize the pitfalls and opportunities provided by developing genuine partnerships. The practical challenges of achieving effective engagement are considerable (Agrawal & Gibson 1999; Waylen et al. 2010, 2013), and such forays are fraught with difficulties and ethical considerations (Chan et al. 2007). When they are done badly, conservation interventions
can damage relationships and trust, and lead to serious injustice to local people and setbacks for ecological
outcomes (Duffy 2010). Much has been written on knowledge exchange and participatory research approaches (e.g. Reed et al. 2014 and references therein). This Practitioner’s Perspective
seeks to focus on the next logical step: the elements that practitioners and researchers need to consider when
engaging with communities to effect conservation. Engagement around the management of protected areas
has been discussed and formalized (e.g. Dudley 2008). Considerable literature has also emerged, particularly
from Africa, on the use and co-management of natural resources, commonly referred to as community-based natural resource management or CBNRM (e.g. Fabricius 2004; Roe, Nelson & Sandbrook 2009; Child & Barnes
2010). There have been attempts to draw general principles for CBNRM (e.g. Thakadu 2005; Gruber 2010). In
the related field of community-based conservation, however, while there have been efforts to draw lessons (e.g. Berkes 2004), little exists in terms of frameworks or guidelines for effectively working with local communities to effect biodiversity conservation in multi-use landscapes
(Mishra 2016). The eight principles for community-based conservation outlined here (Fig. 1) build on ideas developed in fields as diverse as applied ecology, conservation and natural
resource management, community health, social psychology, rural development, negotiation theory, and ethics
(see Mishra 2016). They have been developed, challenged and tested through 20 years of community experience andour own research on the endangered snow leopard Panthera uncia and its mountain ecosystems, in South and Central Asia. We suspect that with contextual adaptations, their relevance for applied ecologists and practitioners may be universal.
|
|
|
Namgail, T., Fox, J., & Bhatnagar, Y. V. (2004). Habitat segregation between sympatric Tibetan argali Ovis ammon hodgsoni and blue sheep Pseudois nayaur in the Indian Trans-Himalaya. Journal of Zoology, 262, 57–63.
Abstract: Tibetan argali Ovis ammon hodgsoni and blue sheep Pseudois nayaur have almost completely overlapping distributions encompassing most of the Tibetan plateau and its margins. Such a sympatric distribution of related species with similar ecological requirements implies that there is some degree of resource partitioning. This may be accomplished on the basis of habitat and/or diet separation. This study evaluated such ecological separation on the basis of physical habitat partitioning by these two sympatric ungulates in Hemis High Altitude National Park, Ladakh, India, in an area where the argali established a small new population in 1978. Such separation was tested for
on the basis of expected difference between the species in their proximity to cliffs, associated with species-specific anti-predator behaviour. Tibetan argali selected habitats away from cliffs while blue sheep selected habitats close to cliffs. Blue sheep also selected steep slopes whereas argali selected gentle slopes. The two species did not differ
in their use of habitats in terms of elevation. They did, however, differ in their use of plant communities; blue sheep selected sub-shrub and grass-dominated communities whilst argali selected forb-dominated communities. We suggest that the two species coexist in this site as a result of the differential use of habitat associated with their
species-specific anti-predator strategies.
|
|
|
Pahuja, M., Sharma, R. K. (2021). Wild Predators, Livestock, and Free Ranging Dogs: Patterns of Livestock Mortality and Attitudes of People Toward Predators in an Urbanizing Trans-Himalayan Landscape. Frontiers in Conservation Science, 2(109), 1–13.
Abstract: Livestock depredation by large carnivores is a significant source of conflicts over predators and an important conservation and economic concern. Preventing livestock loss to wild predators is a substantial focus of human-carnivore conflict mitigation programs. A key assumption of the preventive strategy is reduction in the livestock losses leading to a positive shift in the attitudes toward predators. Therefore, it is important to quantify the true extent of livestock mortality caused by wild predators and its influence on attitudes of the affected communities. We examined seasonal and spatial patterns of livestock mortality and factors influencing people’s attitudes toward wild predators i.e., snow leopards (Panthera uncia) and wolves (Canis lupus chanco) and free-ranging dogs (Canis lupus familiaris) in a Trans-Himalayan urbanizing landscape in India. We used systematic sampling to select the survey households and implemented a semi- structured questionnaire to respondents. The sampled villages (n = 16) represent a mosaic of urban and agricultural ecosystems within a radius of 40 km of Leh town. In 2016–2017, 93% of the sampled households lost livestock to predators, accounting for 0.93 animals per household per year. However, of the total events of livestock mortality, 33% were because of weather/natural events, 24% by snow leopards, 20% because of disease, 15% because of free-ranging dogs and 9% because of wolves. The annual economic loss per household because of livestock mortality was USD 371, a substantial loss given the average per capita income of USD 270 in the region. Of the total loss, weather/natural events caused highest loss of USD 131 (35%), followed by snow leopards USD 91 (25%), disease USD 87 (24%), free ranging dogs USD 48 (13%), and wolves USD 14 (4%). Despite losing a considerable proportion of livestock (33 %) to wild predators, respondents showed a positive attitude toward them but exhibited neutral attitudes toward free-ranging dogs. Gender emerged as the most important determinant of attitudes toward wild predators, with men showing higher positive attitude score toward wild predators than women. Our findings highlight the context specific variation in human-wildlife interactions and emphasize that generalizations must be avoided in the absence of site specific evidence.
|
|
|
Paul, H. A., Bargar, W. L., & Leininger, R. (1985). Total hip replacement in a snow leopard. J Am Vet Med Assoc, 187(11), 1262–1263.
|
|
|
Pollock, R. V., & Carmichael, L. E. (1983). Use of modified live feline panleukopenia virus vaccine to immunize dogs against canine parvovirus. Am J Vet Res, 44(2), 169–175.
Abstract: Modified live feline panleukopenia virus (FPLV) vaccine protected dogs against canine parvovirus (CPV) infection. However, unlike the long- lived (greater than or equal to 20-month) immunity engendered by CPV infection, the response of dogs to living FPLV was variable. Doses of FPLV (snow leopard strain) in excess of 10(5.7) TCID50 were necessary for uniform immunization; smaller inocula resulted in decreased success rates. The duration of immunity, as measured by the persistence of hemagglutination-inhibiting antibody, was related to the magnitude of the initial response to vaccination; dogs with vigorous initial responses resisted oronasal CPV challenge exposure 6 months after vaccination, and hemagglutination-inhibiting antibodies persisted in such dogs for greater than 1 year. Limited replication of FPLV in dogs was demonstrated, but unlike CPV, the feline virus did not spread to contact dogs or cats. Adverse reactions were not associated with living FPLV vaccination, and FPLV did not interfere with simultaneous response to attenuated canine distemper virus.
|
|
|
Rana, B. S. (1997). Distinguishing kills of two large mammalian predators in Spiti Valley Himachal Pradesh. J.Bombay Nat.Hist.Soc, 94(3), 553.
Abstract: The author studied livestock killed by predators in the Spiti Valley, India, to determine what species had killed yaks, horses, donkeys, and other domestic animals. Eleven of the kills examined were made by snow leopards and six by the Tibetan wolf. Wolves were involved in surplus killings, while snow leopards kill as food is needed. lgh
|
|