|
Anwar, M., Jackson, R., Nadeem, M., Janecka, J., Hussain, S., Beg, M., Muhammad, G., and Qayyum, M. (2011). Food habits of the snow leopard Panthera uncia (Schreber, 1775) in Baltistan, Northern Pakistan. European Journal of Wildlife Research, (3 March), 1–7.
Abstract: The snow leopard (Panthera uncia) inhabits the high, remote mountains of Pakistan from where very little information is available on prey use of this species. Our study describes the food habits of the snow leopard in the Himalayas and Karakoram mountain ranges in Baltistan, Pakistan. Ninety-five putrid snow leopard scats were collected from four sites in Baltistan. Of these, 49 scats were genetically confirmed to have originated from snow leopards. The consumed prey was identified on the basis of morphological characteristics of hairs recovered from the scats. It was found that most of the biomass consumed (70%) was due to domestic livestock viz. sheep (23%), goat (16%), cattle (10%), yak (7%), and cattle–yak hybrids (14%). Only 30% of the biomass was due to wild species, namely Siberian ibex (21%), markhor (7%), and birds (2%). Heavy predation on domestic livestock appeared to be the likely cause of conflict with the local inhabitants. Conservation initiatives should focus on mitigating this conflict by minimizing livestock losses.
|
|
|
Chakraborty, R. E., & Chakraborty, S. (1996). Identification of dorsal guard hairs of Indian species of the genus Panthera Oken (Carnivora: Felidae). Mammalia, 60(3), 480.
Abstract: Dorsal guard hairs of four living Indian species of the genus Panthera, viz. P. tigris, P. leo, P. pardus and P. uncia have been studied. It is found that the characters are somewhat overlapping, but identification of the species may be possible from the combination of characters.
|
|
|
De Groot, H., Van Swieten, P., & Aalberse, R. C. (1990). Evidence for a Fel d I-like molecule in the “big cats” (Felidae species). J Allergy Clin Immunol, 86(1), 107–116.
Abstract: In this study, we investigated the cross-reactivity pattern of IgE and IgG4 antibodies to the major feline allergen, Fel d I. We studied the IgE and IgG4 response of 11 cat-allergic patients against Fel d I-like structures in eight members of the Felidae family: ocelot, puma, serval, siberian tiger, lion, jaguar, snow leopard, and caracal. Hair from these “big cats” was collected, extracted, and used in a RAST system and histamine-release test. By means of a RAST-inhibition assay with affinity-purified Fel d I from cat dander, it was established that, in the Felidae species, a Fel d I equivalent is present that reacts with IgE and IgG4 antibodies. We found that all patients had cross-reacting IgE antibodies to seven of the Felidae tested; no IgE antibodies reactive with the caracal were found. Eight of 10 patients with IgG4 antibodies directed to cat dander also had IgG4 antibodies directed to several Felidae species, including the caracal. However, the correlation between the IgE and the IgG4 antibody specificity was low, indicating that, in the case of Fel d I IgE and IgG4, antibodies do not necessarily have the same specificity.
|
|
|
Henschel, P., & Ray, J. (2003). Leopards in African Rainforests: Survey and Monitoring Techniques (Wildlife Conservation Society, Ed.).
Abstract: Monitoring Techniques Forest leopards have never been systematically surveyed in African forests, in spite of their potentially vital ecological role as the sole large mammalian predators in these systems. Because leopards are rarely seen in this habitat, and are difficult to survey using the most common techniques for assessing relative abundances of forest mammals, baseline knowledge of leopard ecology and responses to human disturbance in African forests remain largely unknown. This technical handbook sums up the experience gained during a two-year study of leopards by Philipp Henschel in the Lop‚ Reserve in Gabon, Central Africa, in 2001/2002, supplemented by additional experience from carnivore studies conducted by Justina Ray in southwestern Central African Republic and eastern Congo (Zaire) . The main focus of this effort has been to develop a protocol that can be used by fieldworkers across west and central Africa to estimate leopard densities in various forest types. In developing this manual, Henschel tested several indirect methods to assess leopard numbers in both logged and unlogged forests, with the main effort devoted to testing remote photography survey methods developed for tigers by Karanth (e.g., Karanth 1995, Karanth & Nichols 1998; 2000; 2002), and modifying them for the specific conditions characterizing African forest environments. This handbook summarizes the results of the field testing, and provides recommendations for techniques to assess leopard presence/absence, relative abundance, and densities in African forest sites. We briefly review the suitability of various methods for different study objectives and go into particular detail on remote photography survey methodology, adapting previously developed methods and sampling considerations specifically to the African forest environment. Finally, we briefly discuss how camera trapping may be used as a tool to survey other forest mammals. Developing a survey protocol for African leopards is a necessary first step towards a regional assessment and priority setting exercise targeted at forest leopards, similar to those carried out on large carnivores in Asian and South American forests.
|
|
|
Hol, E. H., & Marden, T. (1994). Methods for Sampling and Analysis to establish potential exposure of wildlife to persistent contaminants in remote areas. In J.L.Fox, & D.Jizeng (Eds.), (pp. 279–287). Usa: Islt.
|
|
|
Khatiwada, J. R., Chalise, M. K., & Kyes, R. (2007). Survey of Snow Leopard (Uncia uncia) and Blue Sheep (Pseudois nayaur) populations in the Kangchenjunga Conservation Area (KCA), Nepal. Final report.
Abstract: This study was carried out in the Kangchenjunga Conservation Area (KCA), Eastern Nepal from Feb – Nov 2007. We used the Snow Leopard Information Management System, SLIMS (second order survey technique) to determine the relative abundance of snow leopard in the upper part of KCA. Altogether, 36 transects (total length of 15.21 km) were laid down in the major three blocks of KCA. 104 Signs (77 scrapes, 20 feces, 2 Scent mark, 3 Pugmarks and 2 hairs) were recorded. Fixed-point count method was applied for blue sheep from appropriate vantage points. We counted total individual in each herd using 8x42 binocular and 15-60x spotting scope. A total of 43 herds and 1102 individuals were observed in the area. The standard SLIMS questionnaire was conducted to find out relevant information on livestock depredation patterns. Out of 35 households surveyed in KCA, 48% of herders lost livestock due to snow leopards. A total of 21 animals were reportedly lost due to snow leopards from August to September 2007.
|
|
|
Ming, M., Munkhtsog, B., Xu, F., Turghan, M., Yin, S. -jing, & Wei, S. - D. (2005). Markings as Indicator of Snow Leopard in Field Survey, in Xinjiang.
Abstract: The Snow Leopard (Uncia uncia) was a very rare species in China. The survey on the markings of Snow Leopard in Ahay and Tianshan Mountains is the major activity of the Project of Snow Leopard in Xinjiang, supported by International Snow Leopard Trust(ISLT)and Xinjiang Conservation Fund(XCF). During the field work from Sep to Nov 2004 the Xinjiang Snow Leopard Group(XSLG) set 67 transects of a total length of 47 776 m with mean transect length is 7 1 3 m at 9 locations.Total of 1 l 8 markings of Snow Leopards were found in 27 transects the mean density is 247km. The markings of Snow Leopard included the pug marks or footprints, scrapes, feces, bloodstain, scent spray, urine, hair or fur, claw rake, remains of prey corpse, sleep site, roar and others. From the quantity and locations of marks the XSLG got the information on habitat selection distribution region and relative abundance of the Snow Leopard in the study areas. The survey also provided knowledge on distribution and abundance of major prey potential conservation problems and human attitudes to Snow Leopards by taking 200 questionnaires in the study areas.
|
|
|
Oli, M. K. (1993). A key for the identification of the hair of mammals of a snow leopard (Panthera uncia) habitat in Nepal. Journal of Zoology London, 231(1), 71–93.
Abstract: Analysis of prey remains in scats, particularly hairs, in widely used to study diet of mammalian predators, but identification of hair is often difficult because hair structures vary considerably both within and between species. Use of photographic reference of diagnostically important hair structures from mammals occurring in a predator's habitat has been found to be convenient for routine identification. A photographic reference key was developed for the identification of hairs of the mammals known to occur in a snow leopard (Panthera uncia) habitat in the Annapurna Conservation Area, Nepal. The key included a photographic reference of the diagnostic hair structures of nine species of wild and five species of domestic mammals. The cross-sectional appearance, shape and arrangement of medulla, the ratio of cortex to medulla, and the form and distribution of pigment in medulla and cortex were important diagnostic aids in the identification of hairs.
|
|
|
Shrestha, B. (2008). Prey Abundance and Prey Selection by Snow Leopard (uncia uncia) in the Sagarmatha (Mt. Everest) National Park, Nepal.
Abstract: Predators have significant ecological impacts on the region's prey-predator dynamic and community structure through their numbers and prey selection. During April-December 2007, I conducted a research in Sagarmatha (Mt. Everest) National Park (SNP) to: i) explore population status and density of wild prey species; Himalayan tahr, musk deer and game birds, ii) investigate diet of the snow leopard and to estimate prey selection by snow leopard, iii) identify the pattern of livestock depredation by snow leopard, its mitigation, and raise awareness through outreach program, and identify the challenge and opportunities on conservation snow leopard and its co-existence with wild ungulates and the human using the areas of the SNP. Methodology of my research included vantage points and regular monitoring from trails for Himalayan tahr, fixed line transect with belt drive method for musk deer and game birds, and microscopic hair identification in snow leopard's scat to investigate diet of snow leopard and to estimate prey selection. Based on available evidence and witness accounts of snow leopard attack on livestock, the patterns of livestock depredation were assessed. I obtained 201 sighting of Himalayan tahr (1760 individuals) and estimated 293 populations in post-parturient period (April-June), 394 in birth period (July -October) and 195 November- December) in rutting period. In average, ratio of male to females was ranged from 0.34 to 0.79 and ratio of kid to female was 0.21-0.35, and yearling to kid was 0.21- 0.47. The encounter rate for musk deer was 1.06 and density was 17.28/km2. For Himalayan monal, the encounter rate was 2.14 and density was 35.66/km2. I obtained 12 sighting of snow cock comprising 69 individual in Gokyo. The ratio of male to female was 1.18 and young to female was 2.18. Twelve species (8 species of wild and 4 species of domestic livestock) were identified in the 120 snow leopard scats examined. In average, snow leopard predated most frequently on Himalayan tahr and it was detected in 26.5% relative frequency of occurrence while occurred in 36.66% of all scats, then it was followed by musk deer (19.87%), yak (12.65%), cow (12.04%), dog (10.24%), unidentified mammal (3.61%), woolly hare (3.01%), rat sp. (2.4%), unidentified bird sp. (1.8%), pika (1.2%), and shrew (0.6%) (Table 5.8 ). Wild species were present in 58.99% of scats whereas domestic livestock with dog were present in 40.95% of scats. Snow leopard predated most frequently on wildlife species in three seasons; spring (61.62%), autumn (61.11%) and winter (65.51%), and most frequently on domestic species including dog in summer season (54.54%). In term of relative biomass consumed, in average, Himalayan tahr was the most important prey species contributed 26.27% of the biomass consumed. This was followed by yak (22.13%), cow (21.06%), musk deer (11.32%), horse (10.53%), wooly hare (1.09%), rat (0.29%), pika (0.14%) and shrew (0.07%). In average, domestic livestock including dog were contributed more biomass in the diet of snow leopard comprising 60.8% of the biomass consumed whilst the wild life species comprising 39.19%. The annual prey consumption by a snow leopard (based on 2 kg/day) was estimated to be three Himalayan tahr, seven musk deer, five wooly hare, four rat sp., two pika, one shrew and four livestock. In the present study, the highest frequency of attack was found during April to June and lowest to July to November. The day of rainy and cloudy was the more vulnerable to livestock depredation. Snow leopard attacks occurred were the highest at near escape cover such as shrub land and cliff. Both predation pressure on tahr and that on livestock suggest that the development of effective conservation strategies for two threatened species (predator and prey) depends on resolving conflicts between people and predators. Recently, direct control of free – ranging livestock, good husbandry and compensation to shepherds may reduce snow leopard – human conflict. In long term solution, the reintroduction of blue sheep at the higher altitudes could also “buffer” predation on livestock.
|
|
|
Waits, L. P., Buckley-Beason, V. A., Johnson, W. E., Onorato, D., & McCarthy, T. (2006). A select panel of polymorphic microsatellite loci for individual identification of snow leopards (Panthera uncia)
(Vol. 7).
Abstract: Snow leopards (Panthera uncia) are elusive endangered carnivores found in remote mountain regions of Central Asia. New methods for identifying and counting snow leopards are needed for conservation and management efforts. To develop molecular genetic tools for individual identification of hair and faecal samples, we screened 50 microsatellite loci developed for the domestic cat (Felis catus) in 19 captive snow leopards. Forty-eight loci were polymorphic with numbers of alleles per locus ranging from two to 11. The probability of observing matching genotypes for unrelated individuals (2.1 x10-11) and siblings (7.5x10-5) using the 10 most polymorphic loci was low, suggesting that this panel would easily discriminate among individuals in the wild.
|
|