|
Fix, A. S., Riordan, D. P., Hill, H. T., Gill, M. A., & Evans, M. B. (1989). Feline panleukopena virus and subsequent canine-distemper virus infection in two snow leopards (Panthera uncia). Journal of Zoo and Wildlife Medicine, 20(3), 273–281.
Abstract: Two adult snow leopards (Panthera uncia), male and female, both with vaccinations current, became infected with feline panleukopenia virus (FPV) at the Blank Park Zoo, Des Moines, Iowa, in late 1988. Clinical signs included weakness, hemorrhagic feces, fever, seizures, and nasal discharge. Blood analysis revealed severe lymphopenia and mild anemia. A positive enzyme-linked immunosorbent assay (ELISA) test for FPV on fecal contents from the male leopard confirmed the diagnosis. In spite of intensive therapy, both animals died. Necropsy of the female, which survived for 1 wk after onset of signs, revealed intestinal crypt necrosis, pulmonary consolidation, necrotizing laryngitis, and diffuse lymphoid depletion. The male leopard, which lived 3 wk after onset of illness, had similar enteric and lymphoid lesions. In addition, there was a severe interstitial pneumonia, with syncytial cells containing eosinophilic intracytoplasmic inclusion bodies. Ultrastructural characteristics of these inclusions featured tubular structures consistent with a paramyxovirus. Although repeated virus isolation attempts from the affected lung were negative, polyclonal and monoclonal fluorescent antibody tests were strongly positive for canine distemper virus (CDV). Frozen paired sera from each leopard demonstrated very high acute and convalescing titers to FPV; both animals also seroconverted to CDV, with titers in the male leopard higher than those in the female. Additional tests for toxoplasmosis, feline infectious peritonitis, feline rhinotracheitis, feline calicivirus, feline leukemia, canine parainfluenza, and bovine respiratory syncytial virus were all negative. The neurologic signs present in these leopards remained unexplained, but may have been attributable to CDV infection. A feral cat trapped on zoo property had feces positive for FPV by ELISA. Although the specific contributions of FPV and CDV toward the development of this case are unknown, it is likely that initial FPV-induced immunosuppression allowed the subsequent development of CDV in these snow leopards. The likelihood that initial FPV infection came from feral cats underscores the importance of feral animal control on zoo premises.
|
|
|
Lutz, H., Hofmann-Lehmann, R., Fehr, D., Leutenegger, C., Hartmann, M., Ossent, P., et al. (1996). Liberation of the wilderness of wild felids bred under human custody: Danger of release of viral infections. Schweizer Archiv fuer Tierheilkunde, 138(12), 579–585.
Abstract: There are several felidae amongst the numerous endangered species. Means of aiding survival are the reintroduction to the wild of animals bred under the auspices of man and their relocation from densely populated to thinly populated areas. It is unlikely that the dangers of such reintroduction or relocation projects have been examined sufficiently in respect to the risks of virus infections confronting individuals kept in zoos or similar situations. This report presents infections may be expected to occur when relo- three examples to illustrate that accidental virus cating and reintroducing wild cats. The first example is the reintroduction of captive snow leopards. Zoo bred snow leopards may be infected with FIV, a virus infection that is highly unlikely to occur in the original hirnalayan highlands of Tibet and China. A second example is of several cases of FIP that occured in European wild cats bred in groups in captivity. The third example mentioned is the relocation of hons from East Africa where all the commonly known feline viruses are wide-spread to the Etosha National Park. In the latter, virus infections such as FIV, FCV and FPV do not occur. The indiscriminate relocation and reintroduction of the wild cats mentioned here harbours a potential of undesirable consequences.
|
|