|
Ahmad, A., Rawat, J. S., & Rai, S. C. (1990). An Analysis of the Himalayan Environment and Guidelines for its Management and Ecologically Sustainable Development. Environmentalist, 10(4), 281–298.
Abstract: The impacts of human activities on the bio-geophysical and socio-economic environment of the Himalayas are analysed. The main man-induced activities which have accelerated ecological degradation and threatened the equilibrium of Himalayan mountain ecosystems are stated as: unplanned land use, cultivation on steep slopes, overgrazing, major engineering activities, over-exploitation of village or community forests, lopping of broad leaved plant species, shifting cultivation (short cycle) in north-east India, tourism and recreation. The geomorphological conditions are major factors responsible for landslides which cause major havoc every year in the area. Wild fauna, like musk deer and the snow leopard are now under threat partially due to changes in their habitat and the introduction of exotic plant species. Population pressure and migration are major factors responsible for poverty in the hills. The emigration of the working male population has resulted in the involvement of women as a major work-force. Guidelines, with special emphasis on the application of environmental impact assessments for the management of the Himalayas, are proposed. -from Authors
|
|
|
Alexander, J. S., Christe, P., Zimmermann, F. (2024). Return of the Eurasian lynx: using local stakeholder knowledge and experiences to inform lynx conservation in the French Alps. Oryx, , 1–9.
Abstract: Large carnivore conservation in human-dominated landscapes is a complex issue, often marked by the stark contrast between those who hold deep-rooted animosity towards these animals and those who welcome their presence. The survival of the Eurasian lynx Lynx lynx in Europe relies on effective coexistence with humans in multi-use areas. We explored the experiences and perceptions of local hunters and pastoralists regarding the return of the lynx to the Giffre Valley, France, and mapped lynx distribution based on the probability of site use while accounting for detection probability. We conducted in-depth interviews with 29 respondents to gather data on lynx sightings, rationale for hunting and pastoralism, and perceptions of lynxes. We found that 45% of respondents had detected lynxes in the last 40 years, with an estimated site use of 0.66 ± SE 0.33 over the last decade, indicating there was a 66% probability of lynxes using the sites during that time period. Our results suggest that hunting and pastoralism in the region are rooted in a desire to carry on local traditions and connect with the natural world. Respondents generally tolerated the presence of lynxes, perceiving few threats to their livelihoods and activities, and expressing a willingness to coexist peacefully. However, some identified future challenges that could arise with the return of large carnivores to the valley and highlighted scenarios that could lead to a decline in tolerance. This study emphasizes the valuable knowledge of local hunters and pastoralists and their potential role in lynx population monitoring and conservation. Integrating stakeholder values in decision- making processes is crucial for inclusive and sustainable responses to promote biodiversity.
|
|
|
Alexander, J. S., Cusack, J. J., Pengju, C, Kun, S., Riordan, P. (2015). Conservation of snow leopards: spill-over benefits for other carnivores? Oryx, (Fauna & Flora International), 1–5.
Abstract: In high-altitude settings of Central Asia the
Endangered snow leopard Panthera uncia has been recognized
as a potential umbrella species. As a first step in assessing
the potential benefits of snow leopard conservation for
other carnivores, we sought a better understanding of the
presence of other carnivores in areas occupied by snow leopards
in China’s Qilianshan National Nature Reserve. We
used camera-trap and sign surveys to examine whether
other carnivores were using the same travel routes as snow
leopards at two spatial scales. We also considered temporal
interactions between species. Our results confirm that other
carnivores, including the red fox Vulpes vulpes, grey wolf
Canis lupus, Eurasian lynx Lynx lynx and dhole Cuon alpinus,
occur along snow leopard travel routes, albeit with low detection
rates. Even at the smaller scale of our camera trap survey
all five carnivores (snow leopard, lynx, wolf, red fox and
dhole) were observed. Kernel density estimates suggested a
high degree of temporal overlap between the snow leopard
and the fox, and the snow leopard and the lynx, as indicated
by high overlap coefficient estimates. There is an opportunity
to consider protective measures at the local scale that would
benefit various species simultaneously. However, it should
also be recognized that snow leopard conservation efforts
could exacerbate human–wildlife conflicts through their protective
effect on other carnivore species.
|
|
|
Allen, P., & Macray, D. (2002). Snow Leopard Enterprises Description and Summarized Business Plan.. Seattle: Islt.
Abstract: The habitat for both humans and snow leopards in Central Asia is marginal, the ecosystem fragile. The struggle for humans to survive has often, unfortunately, brought them into conflict with the region's dwindling snow leopard populations. Herders commonly see leopards as a threat to their way of life and well-being. Efforts to improve the living conditions of humans must consider potential impacts on the environment. Likewise, conservation initiatives cannot ignore humans as elements of the landscape with a right to live with dignity and pride. Based on these principles, the International Snow Leopard Trust has developed a new conservation model that addresses the needs of all concerned.
We call it Snow Leopard Enterprises..
|
|
|
Ammosov, B. (1973). Central Asia mountains. Snow leopard or irbis.
Abstract: All natural zones are represented in the mountains of Central Asia: deserts, semi-deserts, steppes, meadows, forests and shrubs, sub-alpine zones, alpine zones. Irbis (snow leopard) is a typical inhabitant of highlands. In the USSR, snow leopard is distributed in the mountains of Central Asia and southern Siberia. Outside the country this species is met in the Himalayas, Tibet, mountains of Mongolia. It is rare everywhere. The annual world trade is less than 1,000 animals. Being a non-numerous species, it causes negligible damage to farming and hunting industry.
|
|
|
Anandakrishnan, M. B. (1998). The snow leopard: Elusive and endangered. The Environmental Magazine, 9(5), 18–19.
Abstract: The snow leopard has never been common, but there may be fewer than 4,000 left in its Himalayan habitat, and poaching and tourism-related development in the region could drive its numbers down further.
|
|
|
Anonymous. Central Asian Republic Snow Leopard Specialists Plan Joint Conservation Strategy.
|
|
|
Bannikov A.G. (1966). Mountains of Middle Asia and Kazakhstan.
Abstract: The data on geographical location, plants and animals of mountain nature reserves of Middle Asia and Kazakhstan are given. Snow leopard and its preys (wild ibexes and sheep) were recorded in both Almaty and Aksu Jabagly nature reserves.
|
|
|
Berg L.S. (1938). Fauna.
Abstract: It provides description of fauna of the Central Asia mountains. Ibex (Capra sibirica) was noticed to keep to the alpine and sub-alpine zone and never descends bellow 2,500 m. Hunting for ibex and wild sheep, snow leopard (Leopardus uncia) keeps at the same elevation.
|
|
|
Blomqvist, L., & Dexel, B. (2006). In Focus: Declining numbers of wild snow leopards.
Abstract: International collaboration to ensure the long-term survival of snow leopards (Uncia uncia) in the wild is today more acutely needed than ever! Trade in live snow leopards, their skins and bones, has during the last decade reached such extensiveness that the species is in danger of being wiped out from many of its former habitats. All recent surveys support declining populations throughout most of their range.
|
|