|
Batyrov A.R. (1987). Game mammals of Uzbekistan and its change at the late Quaternary.
Abstract: In the process of archeo-zoological investigations in Uzbekistan bones of 81 mammals species were found. Some of them, mainly large mammals are not living here currently. Age of found bones of snow leopard correspond with early and late Holocene.
|
|
|
Fox, J. L., Nurbu, C., & Chundawat, R. S. (1991). The Mountain Ungulates of Ladakh India. Biological Conservation, 58, 167–190.
|
|
|
Hung, L., Talipu, Hua, L., Mingjiang, Q., & Schaller, G. B. (1985). A Snow Leopard Survey in the Taxkorgan Region, XInjiang, China.
|
|
|
Jackson, R., & Ahlborn, G. (1989). Snow Leopards in Nepal-home range and movements. National Geographic Res., 5, 161–175.
|
|
|
Jackson, R., & Hillard, D. (1986). Tracking the elusive snow leopard. National Geographic, 169, 792.
|
|
|
Kolosov A.M. (1975). Central Asia.
Abstract: It describes a mammal species composition in the mountain ecosystems of Central Asia Kopetdag, Hissaro-Alai and Pamir, Tien Shan, and Tarbagatai ridge. Data on distribution and population number is presented.
|
|
|
Rasool, G. (1990). Population status of Wildlife in Khunjerab National Park. Tigerpaper, Xvii(4), 25–28.
|
|
|
Roth, T. L., Howard, J. G., Donoghue, A. M., Swanson, W. F., & Wildt, D. E. (1994). Function and culture requirements of snow leopard (Panthera uncia) spermatozoa in vitro. J Reprod Fertil, 101(3), 563–569.
Abstract: Electroejaculates from eight snow leopards were used to determine how the motility of spermatozoa was influenced by (i) type of media (Ham's F10, PBS, human tubal fluid or RPMI-1640); (ii) holding temperature (23 degrees C versus 37 degrees C); (iii) washing of spermatozoa and (iv) a sperm metabolic enhancer, pentoxifylline. The duration of sperm motility was assessed by evaluating samples in each treatment every hour for 6 h and a sperm motility index (a value combining percentage sperm motility and rate of forward progression) calculated. Spermatozoa from the Ham's F10, PBS and PBS plus pentoxifylline treatments were also co-incubated with zona-intact, domestic cat eggs that were fixed and evaluated for spermatozoa bound to the zona pellucida, penetrating the outer and inner layers of the zona pellucida and within the perivitelline space. During the 6 h co-incubation, the sperm motility index in PBS with pentoxifylline was greater (P < 0.05) than in PBS alone which, in turn, was greater (P < 0.05) than in the other three test media. Washing the spermatozoa enhanced (P < 0.05) motility in both PBS and PBS plus pentoxifylline relative to unwashed samples, but there was no effect (P > 0.05) of holding temperature. Pentoxifylline supplementation enhanced (P < 0.05) the proportion of cat eggs with bound, but not penetrated, snow leopard spermatozoa in the inner layer of the zona pellucida, and there were no spermatozoa in the perivitelline space.(ABSTRACT TRUNCATED AT 250 WORDS)
|
|
|
Sludsky A.A. (1982). Genus Snow leopard Uncia Gray, 1854. Snow leopard Uncia uncia Schreber, 1775 (Vol. Vol. III, Part 2.).
Abstract: Snow leopard is rare and extinctive species that have scientific and aesthetic significance. The features of genus Uncia and species Uncia uncia are described. Also distribution, habitat, way of life, reproduction biology, behavioural patterns, migration routes, infections and parasites, enemies and competitors, number and number fluctuation, practical value of snow leopard in the Kazakhstan are given.
|
|
|
Wang, X., Peng, J., & Zhou, H. (2000). Preliminary observations on the distribution and status of dwarf blue sheep Pseudois schaeferi. Oryx, 34(1), 21–26.
Abstract: Describes the drastic decline of the dwarf blue sheep since the 1950's primarily due to over-hunting. There are an estimated 200 individuals remaining in a 295 square km range in Batang county, China. The authors recommend urgent protection for this species.
|
|