Macdonald, A. A., & Johnstone, M. (1995). Comparative anatomy of the cardiac foramen ovale in cats (Felidae), dogs (Canidae), bears (Ursidae) and hyaenas (Hyaenidae). J Anat, 186 ( Pt 2), 235–243.
Abstract: The structure of the foramen ovale from 16 species representing 4 carnivore families, the Felidae, Canidae, Ursidae and Hyaenidae, was studied using the scanning electron microscope. The Felidae were represented by 9 domestic cat fetuses (Felis catus), 2 snow leopard neonates (Uncia uncia), an ocelot neonate (Leopardus pardalis), 2 lion neonates (Panthera leo), a panther neonate (Panthera pardus) and 3 tigers (Neofelis tigris), comprising 2 fetuses and a neonate. The Canidae were represented by a golden jackal neonate (Canis aureus), a newborn wolf (Canis lupus), 8 domestic dog fetuses (Canis familiaris), 3 red fox neonates (Vulpes vulpes) and a dhole neonate (Cuon alpinus). The Ursidae were represented by a brown bear neonate (Ursus arctos), a day-old grizzly bear cub (Ursus arctos horribilis), a polar bear neonate (Ursus maritimus), and 2 additional bear fetuses (species unknown). The Hyaenidae were represented by a striped hyaena neonate (Hyaena hyaena). In each species, the foramen ovale, when viewed from the terminal part of the caudal vena cava, had the appearance of a short tunnel. A thin fold of tissue, the developed remains of the embryonic septum primum, extended from the distal end of the caudal vena cava for a variable distance into the lumen of the left atrium and contributed towards the 'tunnel' appearance in all specimens. It constituted a large proportion of the tube, and its distal end was straight-edged. There was fibrous material underlying the endothelium of the flap, the apparent morphology of which suggested that it comprised cardiac muscle.(ABSTRACT TRUNCATED AT 250 WORDS)
|
Schaller, G. (1993). Tibet's remote Chang Tang: in a high and sacred realm. National Geog., 184(2), 62–87.
|
Johansson, O., McCarthy, T., Samelius, G., Andren, H., Tumursukh, L., Mishra, C. (2015). Snow leopard predation in a livestock dominated landscape in Mongolia. Biological Conservation, 184, 251–258.
Abstract: Livestock predation is an important cause of endangerment of the snow leopard (Panthera uncia) across
its range. Yet, detailed information on individual and spatio-temporal variation in predation patterns of
snow leopards and their kill rates of livestock and wild ungulates are lacking.
We collared 19 snow leopards in the Tost Mountains, Mongolia, and searched clusters of GPS positions
to identify prey remains and estimate kill rate and prey choice.
Snow leopards killed, on average, one ungulate every 8 days, which included more wild prey (73%) than
livestock (27%), despite livestock abundance being at least one order of magnitude higher. Predation on
herded livestock occurred mainly on stragglers and in rugged areas where animals are out of sight of herders.
The two wild ungulates, ibex (Capra ibex) and argali (Ovis ammon), were killed in proportion to their
relative abundance. Predation patterns changed with spatial (wild ungulates) and seasonal (livestock)
changes in prey abundance. Adult male snow leopards killed larger prey and 2–6 times more livestock
compared to females and young males. Kill rates were considerably higher than previous scat-based estimates, and kill rates of females were higher than kill rates of males. We suggest that (i) snow leopards
prey largely on wild ungulates and kill livestock opportunistically, (ii) retaliatory killing by livestock herders
is likely to cause greater mortality of adult male snow leopards compared to females and young
males, and (iii) total off-take of prey by a snow leopard population is likely to be much higher than previous
estimates suggest.
|
Murali, R., Ikhagvajav, P., Amankul, V., Jumabay, K., Sharma,
K., Bhatnagar, Y. V., Suryawanshi, K., Mishra, C. (2020). Ecosystem service dependence in livestock and crop-based. Journal of Arid Environments, 180, 1–10.
Abstract: Globally, in semi-arid and arid landscapes, there is an
ongoing transition from livestock-production systems to crop-production
systems, and in many parts of Asia's arid mountains, mining for minerals
is also increasing. These changes are accompanied by a change in the
generation and quality of ecosystem services (ES), which can impact
human well-being. In this study, to better understand the impacts of
such transitions, we quantified ES in two crop-based and three
livestock-based production systems in the arid and semi-arid landscapes
of the High Himalaya and Central Asia, specifically in the Indian
Himalaya, Kyrgyz Tien Shan, and Mongolian Altai. Our results showed 1)
high economic dependence (3.6–38 times the respective annual household
income) of local farmers on provisioning ES, with the economic value of
ES being greater in livestock-production systems (7.4–38 times the
annual household income) compared to crop-production systems (3.6–3.7
times the annual household income); 2) ES input into cashmere
production, the main commodity from the livestock-production systems,
was 13–18 times greater than the price of cashmere received by the
farmer; and 3) in the livestock production systems affected by mining,
impacts on ES and quality of life were reported to be negative by
majority of the respondents. We conclude that livestock-based systems
may be relatively more vulnerable to degrading impacts of mining and
other ongoing developments due to their dependence on larger ES resource
catchments that tend to have weaker land tenure and are prone to
fragmentation. In contrast to the general assumption of low value of ES
in arid and semi-arid landscapes due to relatively low primary
productivity, our study underscores the remarkably high importance of ES
in supporting local livelihoods.
|
White, S. D., Stannard, A. A., Ihrke, P. J., & Rosser, E. J. (1981). Therapy of demodicosis in snow leopard challenged. J Am Vet Med Assoc, 178(9), 877–878.
|
Kichloo, M. A., Sharma, K., Sharma, N. (2023). Climate casualties or human disturbance? Shrinking distribution of the three large carnivores in the Greater Himalaya. Springer – Climatic Change, 176(118), 1–17.
Abstract: Mammalian carnivores are key to our understanding of ecosystem dynamics, but most of them are threatened with extinction all over the world. Conservating large carnivores is often an arduous task considering the complex relationship between humans and carnivores, and the diverse range and reasons of threats they face. Climate change is exacerbating the situation further by interacting with most existing threats and amplifying their impacts. The Mountains of Central and South Asia are warming twice as rapidly as the rest of the northern hemisphere. There has been limited research on the effect of climate change and other variables on large carnivores. We studied the patterns in spatio-temporal distribution of three sympatric carnivores, common leopard, snow leopard, and Asiatic black bear in Kishtwar high altitude National Park, a protected area in the Great Himalayan region of Jammu and Kashmir. We investigated the effects of key habitat characteristics as well as human disturbance and climatic factors to understand the spatio-temporal change in their distributions between the early 1990s and around the year 2016–2017. We found a marked contraction in the distribution of the three carnivores between the two time periods. While snow leopard shifted upwards and further away from human settlements, common leopard and Asiatic black bear suffered higher rates of local extinctions at higher altitudes and shifted to lower areas with more vegetation, even if that brought them closer to settlements. We also found some evidence that snow leopards were less likely to have faced range contraction in areas with permanent glaciers. Our study underscores the importance of climate adaptive conservation practices for long-term management in the Greater Himalaya, including the monitoring of changes in habitat, and space-use patterns by human communities and wildlife.
|
Jackson, R., & Hillard, D. (1986). Tracking the elusive snow leopard. National Geographic, 169, 792.
|
Anonymous. (1980). Woodland Park Zoo gets “excellent” rating. International Zoo News, 165(45), 44–45.
|
Hast, M. H. (1989). The larynx of roaring and non-roaring cats. J Anat, 163, 117–121.
Abstract: Dissections were made of the larynges of 14 species of the cat family, with representative specimens from all genera. It was found that the vocal folds of the larynx of genus Panthera (with the exception of the snow leopard) form the basic structure of a sound generator well- designed to produce a high acoustical energy. Combined with an efficient sound radiator (vocal tract) that can be adjusted in length, a Panthera can use its vocal instrument literally to blow its own horn with a 'roar'. Also, it is proposed that laryngeal morphology can be used as an anatomical character in mammalian taxonomy.
|
Stidworthy, M. F., Lewis, J. C. M., Penderis, J., & Palmer, A. C. (2009). Progressive encephalomyelopathy and cerebellar degeneration in a captive-bred snow leopard (Uncia uncia) (Vol. 162).
Abstract: PROGRESSIVE encephalomyelopathy with cerebellar degeneration has been described in captive cheetahs (Palmer and others 2001) and in young domestic cats (Palmer and Cavanagh 1995). This case report describes the clinical and histopathological findings in a very similar condition affecting a young snow leopard (Uncia uncia) that had been born in a zoological park in eastern England as part of the globally coordinated breeding programme for this critically endangered species.
|