Home | << 1 2 >> |
Alexander, J. S., Cusack, J. J., Pengju, C, Kun, S., Riordan, P. (2015). Conservation of snow leopards: spill-over benefits for other carnivores? Oryx, (Fauna & Flora International), 1–5.
Abstract: In high-altitude settings of Central Asia the
Endangered snow leopard Panthera uncia has been recognized as a potential umbrella species. As a first step in assessing the potential benefits of snow leopard conservation for other carnivores, we sought a better understanding of the presence of other carnivores in areas occupied by snow leopards in China’s Qilianshan National Nature Reserve. We used camera-trap and sign surveys to examine whether other carnivores were using the same travel routes as snow leopards at two spatial scales. We also considered temporal interactions between species. Our results confirm that other carnivores, including the red fox Vulpes vulpes, grey wolf Canis lupus, Eurasian lynx Lynx lynx and dhole Cuon alpinus, occur along snow leopard travel routes, albeit with low detection rates. Even at the smaller scale of our camera trap survey all five carnivores (snow leopard, lynx, wolf, red fox and dhole) were observed. Kernel density estimates suggested a high degree of temporal overlap between the snow leopard and the fox, and the snow leopard and the lynx, as indicated by high overlap coefficient estimates. There is an opportunity to consider protective measures at the local scale that would benefit various species simultaneously. However, it should also be recognized that snow leopard conservation efforts could exacerbate human–wildlife conflicts through their protective effect on other carnivore species. |
Aryal, A. (2009). Final Report On Demography and Causes of Mortality of Blue Sheep (Pseudois nayaur) in Dhorpatan Hunting Reserve in Nepal.
Abstract: A total of 206 individual Blue sheep Pseudois nayaur were estimated in Barse and Phagune blocks of Dhorpatan Hunting Reserve (DHR) and population density was 1.8 Blue sheep/sq.km. There was not significant change in population density from last 4 decades. An average 7 animals/herd (SD-5.5) were classified from twenty nine herds, sheep per herds varying from 1 to 37. Blue sheep has classified into sex ratio on an average 75 male/100females was recorded in study area. The sex ratio was slightly lower but not significantly different from the previous study. Population of Blue sheep was seen stable or not decrease even there was high poaching pressure, the reason may be reducing the number of predators by poison and poaching which has
supported to increase blue sheep population. Because of reducing the predators Wolf Canis lupus, Wild boar population was increasing drastically in high rate and we can observed wild boar above the tree line of DHR. The frequency of occurrence of different prey species in scats of different predators shows that, excluding zero values, the frequencies of different prey species were no significantly different (ö2= 10.3, df = 49, p > 0.05). Most of the scats samples (74%) of Snow leopard, Wolf, Common Leopard, Red fox's cover one prey species while two and three species were present in 18% and 8%, respectively. Barking deer Muntiacus muntjak was the most frequent (18%) of total diet composition of common leopards. Pika Ochotona roylei was the most frequent (28%), and Blue sheep was in second position for diet of snow leopards which cover 21% of total diet composition. 13% of diet covered non-food item such as soil, stones, and vegetable. Pika was most frequent on Wolf and Red fox diet which covered 32% and 30% respectively. There was good positive relationship between the scat density and Blue sheep consumption rate, increasing the scat density, increasing the Blue sheep consumption rate. Blue sheep preference by different predators such as Snow leopard, Common leopard, Wolf and Red fox were 20%, 6%, 13% and 2% of total prey species respectively. Keywords: Report; mortality; blue; blue sheep; blue-sheep; sheep; Pseudois; pseudois nayaur; Pseudois-nayaur; nayaur; Dhorpatan; hunting; reserve; Nepal; biodiversity; research; training; snow; snow leopard; snow-leopard; leopard; conservation; program; population; Population-Density; density; densities; change; Sex; study; area; High; poaching; Pressure; reducing; number; predators; predator; poison; wolf; wolves; canis; Canis-lupus; lupus; wild; wild boar; prey; prey species; prey-species; species; scats; scat; value; fox; cover; deer; diet; leopards; pika; snow leopards; snow-leopards; soil; Relationship
|
Augugliaro, C., Christe, P., Janchivlamdan, C., Baymanday, H.,
Zimmermann, F. (2020). Patterns of human interaction with snow leopard and co-predators
in the Mongolian western Altai: Current issues and perspectives. Global Ecology and Conservation, 24, 1–21.
Abstract: Large carnivores can cause considerable economic damage,
mainly due to livestock depredation. These conficts instigate negative attitude towards their conservation, which could in the extreme case lead to retaliatory killing. Here we focus on the snow leopard (Panthera uncia), a species of conservation concern with particularly large spatial requirements. We conducted the study in the Bayan Olgii province, one of the poorest provinces of Mongolia, where the majority of the human population are traditional herders. We conducted a survey among herders (N 261) through a semi-structured questionnaire with the aim to assess: the current and future herding practices and prevention measures, herders’ perceptions and knowledge of the environmental protection and hunting laws; the perceived livestock losses to snow leopard, wolf (Canis lupus), and wolverine (Gulo gulo), as well as to non-predatory factors; the key factors affecting livestock losses to these three large carnivores; and, finally, the attitudes towards these three large carnivores. Non-predatory causes of mortality were slightly higher than depredation cases, representing 4.5% and 4.3% of livestock holdings respectively. While no depredation of livestock was reported from wolverines, snow leopard and wolf depredation made up 0.2% and 4.1% of total livestock holdings, respectively. Herders’ attitudes towards the three large carnivores were negatively affected by the magnitude of the damages since they had a positive overall attitude towards both snow leopard and wolverine, whereas the attitude towards wolf was negative. We discuss conservation and management options to mitigate herder-snow leopard impacts. To palliate the negative consequences of the increasing trend in livestock numbers, herd size reduction should be encouraged by adding economic value to the individual livestock and/or by promoting alternative income and/or ecotourism. Furthermore, co-management between government and stakeholders would help tackle this complex problem, with herders playing a major role in the development of livestock management strategies. Traditional practices, such as regularly shifting campsites and using dogs and corrals at night, could reduce livestock losses caused by snow leopards. |
Bagchi, S., Mishra, C., & Bhatnagar, Y. (2004). Conflicts between traditional pastoralism and conservation of Himalayan ibex (Capra sibirica) in the Trans-Himalayan mountains. Animal Conservation, 7, 121–128.
Abstract: There is recent evidence to suggest that domestic livestock deplete the density and diversity of wild herbivores in the cold deserts of the Trans-Himalaya by imposing resource limitations. To ascertain the degree and nature of threats faced by Himalayan ibex (Capra sibirica) from seven livestock species, we studied their resource use patterns over space, habitat and food dimensions in the pastures of Pin Valley National Park in the Spiti region of the Indian Himalaya. Species diet profiles were obtained by direct observations. We assessed the similarity in habitat use and diets of ibex and livestock using Non-Metric Multidimensional Scaling. We estimated the influence of the spatial distribution of livestock on habitat and diet choice of ibex by examining their co-occurrence patterns in cells overlaid on the pastures. The observed co-occurrence of ibex and livestock in cells was compared with null-models generated through Monte Carlo simulations. The results suggest that goats and sheep impose resource limitations on ibex and exclude them from certain pastures. In the remaining suitable habitat, ibex share forage with horses. Ibex remained relatively unaffected by other livestock such as yaks, donkeys and cattle. However, most livestock removed large amounts of forage from the pastures (nearly 250 kg of dry matter/day by certain species), thereby reducing forage availability for ibex. Pertinent conservation issues are discussed in the light of multiple-use of parks and current socio-economic transitions in the region, which call for integrating social and ecological feedback into management planning.
Keywords: conflicts; traditional pastoralism; himalayan ibex; ibex; capra sibirica; trans-himalayan mountains; pin valley national park; spiti region; non-metric multidimensional scaling; snow leopard; wolf; wild dog; Lynx; wild ass; Tibetan argali; Tibetan antelope; Tibetan gazelle; urial; bharal; Pin River; pin valley; Parahio; goat; sheep; Cattle; horses; yaks; donkeys; diet; free-ranging horses; herded horses; grazing; 5290
|
Din, J. U., Ali, H., Ali, A., Younus, M., Mehmood,, T., Rashid, Y. N., Nawaz, M. A. (2017). Pastoralist-predator interaction at the roof of the world: Conflict dynamics and implications for conservation. Ecology and Society, 22(2).
Abstract: Pastoralism and predation are two major concomitantly known facts and matters of concern for conservation biologists worldwide. Pastoralist-predator conflict constitutes a major social-ecological concern in the Pamir mountain range encompassing Afghanistan, Pakistan, and Tajikistan, and affects community attitudes and tolerance toward carnivores. Very few studies have been conducted to understand the dynamics of livestock predation by large carnivores like snow leopards (Panthera uncia) and wolves (Canis
lupus), owing to the region�s remoteness and inaccessibility. This study attempts to assess the intensity of livestock predation (and resulting perceptions) by snow leopards and wolves across the Afghani, Pakistani, and Tajik Pamir range during the period January 2008�June 2012. The study found that livestock mortality due to disease is the most serious threat to livestock (an average 3.5 animal heads per household per year) and ultimately to the rural economy (an average of US$352 per household per year) as compared to predation (1.78 animal heads per household per year, US$191) in the three study sites. Overall, 1419 (315 per year) heads of livestock were reportedly killed by snow leopards (47%) and wolves (53%) in the study sites. People with comparatively smaller landholdings and limited earning options, other than livestock rearing, expressed negative attitudes toward both wolves and snow leopards and vice versa. Education was found to be an effective solution to dilute people�s hatred for predators. Low public tolerance of the wolf and snow leopard in general explained the magnitude of the threat facing predators in the Pamirs. This will likely continue unless tangible and informed conservation measures like disease control and predation compensation programs are taken among others. Keywords: Afghan Pamir; carnivore; conflict; Pak Pamir; pastoralist; predation; snow leopard; Tajik Pamir; wolf
|
Fox, J. L., & Chundawat, R. S. (1995). Wolves in the Transhimalayan region of India: The continued survival of a low-density population. Canadian Circumpolar Institute Occasional Publication No.35; Ecology and conservation of wolves in a changing world, 35, 95–103.
Abstract: Canadian Cirumpolar Institute, University of Alberta, Edmonton, Alberta, Canada/Second North American Symposium on Wolves, Edmonton, Alberta, Canada, August 25-27, 1992
|
Gao, Y., Wang, Y., Lee, A. T. L., Liu, Y., Luo, Y., Orrick, K., Alexander, J. S., Sangpo, J. T., Clark, S. G. (2023). Contextualizing sociodemographic differences in Tibetan attitudes toward large carnivores. Conservation Science and Practice, (e13049), 1–15.
Abstract: Fostering human–wildlife coexistence necessitates a thorough and nuanced grasp of local attitudes toward wildlife. Attitudes can vary substantially based on the sociodemographic backgrounds of individuals within a society. This study examines Tibetan attitudes toward large carnivores, emphasizing the importance of contextualization in discerning the effects of sociodemographic factors on attitudes. We began by analyzing existing research on Tibetan attitudes toward wildlife in China, identifying previously studied sociodemo- graphic variables. We then executed an online survey to evaluate the affective, behavioral, cognitive, and overall attitudes of ethnic Tibetans in China toward snow leopards (Panthera uncia), gray wolves (Canis lupus), and brown bears (Ursus arctos). Our findings show that while factors such as gender, age, religious identity, and level of education shape these attitudes, their influence differs depending on the specific attitude component and the target animal under examination. Therefore, making broad generalizations about sociodemographic differences in attitudes can be misleading. It is imperative for attitude research to clearly define the attitude component (what type of attitude), object (attitude toward what), and circumstance (attitude in which situation) being studied. Conducting ethnographic fieldwork in collaboration with local cultural experts can deepen our understanding of local perspectives and the ways sociodemographic factors influence attitudes. Such insights are pivotal for developing conservation strategies attuned to local sociocultural contexts.
|
Kachel, S., Anderson, K., Shokirov, Q. (2022). Predicting carnivore habitat use and livestock depredation risk with false-positive multi-state occupancy models. Biological Conservation, 271(109588), 1–10.
Abstract: The cycle of livestock depredation and retaliatory killing constitutes a major threat to large carnivores worldwide and imposes considerable hardships on human communities. Mitigation efforts are often undertaken with little knowledge of ecological underpinnings and patterns of depredation, limiting conservationists' ability to develop, prioritize, and evaluate solutions. Carnivore detection and depredation data from interviews in affected communities may help address this gap, but such data are often prone to false-positive uncertainty. To address these challenges in the Pamir Mountains of Tajikistan we collected snow leopard, lynx, wolf, and bear detection and depredation reports from local communities via semi-structured interviews. We used a novel hierarchical multi-species multi-state occupancy model that accounted for potential false-positives to investigate carnivore site use and depredation concurrently with respondents' apparent vulnerability to that risk. Estimated false-positive probabilities were small, but failure to account for them overstated site use probabilities and depredation risk for all species. Although individual vulnerability was low, depredation was nonetheless commonplace. Carnivore site use was driven by clear habitat associations, but we did not identify any clearly important large-scale spatial correlates of depredation risk despite considerable spatial variation in that risk. Respondents who sheltered livestock in household corrals reinforced with wire mesh were less likely to report snow leopard depredations. Reducing depredation and retaliation at adequately large scales in the Pamirs will likely require a portfolio of species-specific strategies, including widespread proactive corral improvements. Our approach expanded inference on the often-cryptic processes surrounding human-carnivore conflict even though structured wildlife data were scarce.
|
Kachel, S., Bayrakcismith, R., Kubanychbekov, Z., Kulenbekov, R., McCarthy, T., Weckworth, B., Wirsing, A. (2022). Ungulate spatiotemporal responses to contrasting predation risk from wolves and snow leopards. Journal of Animal Ecology, , 1–16.
Abstract: 1. Spatial responses to risk from multiple predators can precipitate emergent consequences for prey (i.e. multiple-predator effects, MPEs) and mediate indirect interactions between predators. How prey navigate risk from multiple predators may therefore have important ramifications for understanding the propagation of predation-risk effects (PREs) through ecosystems.
2. The interaction of predator and prey traits has emerged as a potentially key driver of antipredator behaviour but remains underexplored in large vertebrate systems, particularly where sympatric prey share multiple predators. We sought to better generalize our understanding of how predators influence their ecosystems by considering how multiple sources of contingency drive prey distribution in a multi-predator–multi-prey system. 3. Specifically, we explored how two sympatric ungulates with different escape tactics—vertically agile, scrambling ibex Capra sibirica and sprinting argali Ovis ammon—responded to predation risk from shared predators with contrasting hunting modes—cursorial wolves Canis lupus and vertical-ambushing, stalking snow leopards Panthera uncia. 4. Contrasting risk posed by the two predators presented prey with clear trade-offs. Ibex selected for greater exposure to chronic long-term risk from snow leopards, and argali for wolves, in a nearly symmetrical manner that was predictable based on the compatibility of their respective traits. Yet, acute short-term risk from the same predator upended these long-term strategies, increasing each ungulates' exposure to risk from the alternate predator in a manner consistent with a scenario in which conflicting antipredator behaviours precipitate risk-enhancing MPEs and mediate predator facilitation. By contrast, reactive responses to wolves led ibex to reduce their exposure to risk from both predators—a risk-reducing MPE. Evidence of a similar reactive risk-reducing effect for argali vis-à-vis snow leopards was lacking. 5. Our results suggest that prey spatial responses and any resulting MPEs and prey-mediated interactions between predators are contingent on the interplay of hunting mode and escape tactics. Further investigation of interactions among various drivers of contingency in PREs will contribute to a more comprehensive understanding and improved forecasting of the ecological effects of predators. |
Kachel, S. M., Karimov, K., Wirsing, A. J. (2022). Predator niche overlap and partitioning and potential interactions in the mountains of Central Asia. Journal of Mammalogy, XX(X), 1–11.
Abstract: Direct and indirect interactions among predators affect predator fitness, distribution, and overall community structure. Yet, outside of experimental settings, such interactions are difficult to observe and thus poorly understood. Patterns of niche overlap among predators reflect and shape community interactions and may therefore help elucidate the nature and intensity of intraguild interactions. To better understand the coexistence of two apex predators, snow leopards (Panthera uncia) and wolves (Canis lupus), we investigated their spatial, temporal, and dietary niche overlap in summer in the Pamir Mountains of Tajikistan. We estimated population- level space use via spatial capture–recapture models based on noninvasive genetics and camera traps, diel activity patterns based on camera trap detections, and diet composition from prey remains in carnivore scats, from which we estimated coefficients between 0 and 1 for overlap in space, time, and diet, respectively. Snow leopards and wolves displayed moderate spatial partitioning (0.26, 95% confidence interval [CI]: 0.17–37), but overlapping temporal (0.77, 95% CI: 0.64–0.90) and dietary (0.97, 95% CI: 0.80–0.99) niches. Both predators relied on seasonally abundant marmots (Marmota caudata) rather than wild ungulates, their typical primary prey, suggesting that despite patterns of overlap that were superficially conducive to exploitation competition and predator facilitation, prey were likely not a limiting factor. Therefore, prey-mediated interactions, if present, were unlikely to be a major structuring force in the ecosystem. By implication, carnivore conservation planning and monitoring in the mountains of Central Asia should more fully account for the seasonal importance of marmots in the ecosystem.
|
Kataevsky V.N. (2002). Mammals of Sary Chelek nature reserve.
Abstract: The 30 species of mammals are presented in Sary Chelek nature reserve, Kyrgyzstan. Comparison of status of mammal's diversity in Soviet period and present time is made. Number decrease for some mammals is noted. Number of snow leopard in Sary Chelek is 2 individuals, Turkestan lynx 3, wolf 10, bear 20, badger 20, fox 25, jackal 25, wild boar 100 individuals. Snow leopard included in national Red data Book and Global Red List.
Keywords: Kyrgyzstan; Sary Chelek nature reserve; mammals; number decrease; snow leopard; Lynx; bear; wolf; badger; fox; jackal; wild boar.; 7150; Russian
|
Linnell, J., Swenson, J., Landa A., & and Kvam, T. (1998). Methods for monitoring European large carnivores – A worldwide review of relevant experience. NINA Oppdragsmelding, 549, 1–38.
Abstract: Against a background of recovering large carnivore populations in Norway, and many other areas of Europe, it is becoming increasingly important to develop methods to monitor their populations. A variety of parameters can monitored depending on objectives. These parameters include: presence/absense, distribution, population trend indices, minimum counts, statistical estimates of population size, reproductive parameters and health/condition. Three broad categories of monitoring techniques can be recognised each with increasing levels of fieldwork required. The first category includes those techniques that do not require original fieldwork. The second category involves fieldwork, but where individually recognisable carnivores are not available. The third category includes methods where fieldwork has recognisable individuals available. Different mehtods tend to have been used for different species, mainly because of limitations imposed by the different species' ecology. The most precise estimates of population size have been obtained in research projects with relatively small study sites and with the help of radio-telemetry. However, it may be difficult, or impossible, to apply these methods over large monitoring areas. Therefore, in terms of practical management, a combination of minimum counts, supported by an independent index may be more useful than statistical population estimates. All methods should be subject to a careful design process, and power analysis should be conducted to determine the sensitivity of the method to detect changes.
Based on the review of over 200 papers and reports we recommend a package of complementary monitoring methods for brown bear, wolverine, lynx and wolf in Norway. These include the use of observations from the public and reports of predation on livestock to determine broad patterns of distribution, and an index based on hunter observations per hunting day, for all four species. Minimum counts of reproductive units, natal dens, family groups, and packs, should be obtained from snow-tracking for wolverines, lynx and wolves respectively. In addition a track-count index should be obtained for wolverines and lynx. As much data as possible should be obtained of lynx and wolvereines killed in the annual harvest. Brown bears will be difficult to monitor without the use of radio-telemetry, therfore they may require periodic telemetry based, mark-recapture studies. Such a program can easily be constructed within existing central and regional wildlife management structures, but will require extensive involvement from hunters. |
Mallon, D. P. (1991). Status and Conservation of Large Mammals in Ladakh. Biological Conservation, 56(1), 101–119.
Abstract: The distribution and status of large mammals was surveyed in a 15 000 km2 study area in Ladakh, India. Snow leopard Panthera uncia, wolf Canis lupus, ibex Capra ibex and bharal Pseudois nayaur have an almost continuous distribution throughout; Ladakh urial Ovis vignei, Tibetan argali Ovis ammon, wild ass Equus kiang and brown bear Ursus arctos have a limited distribution. Snow leopard prefer lower altitudes and rocky, undisturbed areas. Ibex and bharal occupy similar rocky habitats but their ranges are mostly separate, with a small area of overlap. The Ladakh urial shows signs of recovery from an earlier decline. Natural resources are widely used for fuel, fodder and grazing, but favourable factors include a low human population, low level of hunting and the existence of some uninhabited and undisturbed areas. A comprehensive Protected Area Network has been proposed.
Keywords: Ladakh; India; snow-leopard; wolf; Canis-lupus; ibex; brown-bear; bear; Ursus-arctos; parks; reserves; hunting; herders; livestock; snow leopard; browse; canis; lupis; ursus; arctos; 800
|
Mishra, C. (1997). Livestock depredation by large carnivores in the Indian trans-Himalaya: Conflict perceptions and conservation prospects. Environmental Conservation, 24(4), 338–343.
Abstract: Livestock depredation by the snow leopard, Uncia uncia, and the wolf, Canis lupus, has resulted in a human-wildlife conflict that hinders the conservation of these globally-threatened species throughout their range. This paper analyses the alleged economic loss due to livestock depredation by these carnivores, and the retaliatory responses of an agro-pastoral community around Kibber Wildlife Sanctuary in the Indian trans-Himalaya. The three villages studied (80 households) attributed a total of 189 livestock deaths (18% of the livestock holding) over a period of 18 months to wild predators, and this would amount to a loss per household equivalent to half the average annual per capita income. The financial compensation received by the villagers from the Government amounted to 3% of the perceived annual loss. Recent intensification of the conflict seems related to a 37.7% increase in livestock holding in the last decade. Villagers have been killing the wolf, though apparently not the snow leopard. A self-financed compensation scheme, and modification of existing livestock pens are suggested as area-specific short-term measures to reduce the conflict. The need to address the problem of increasing livestock holding in the long run is emphasized.
|
Mishra, C., & Fitzherbert, A. (2004). War and wildlife: a post-conflict assessment of Afghanistan's Wakhan Corridor. Oryx, 38(1), 102–105.
Abstract: Prior to the last two decades of conflict, Afghanistan's Wakhan Corridor was considered an important area for conservation of the wildlife of high altitudes. We conducted an assessment of the status of large mammals in Wakhan after 22 years of conflict, and also made a preliminary assessment of wildlife trade
in the markets of Kabul, Faizabad and Ishkashem. The survey confirmed the continued occurrence of at least eight species of large mammals in Wakhan, of which the snow leopard Uncia uncia and Marco Polo sheep Ovis ammon are globally threatened. We found evidence of human-wildlife conflict in Wakhan due to livestock depredation by snow leopard and wolf Canis lupus. Large mammals are hunted for meat, sport, fur, and in retaliation against livestock depredation. The fur trade in Kabul is a threat to the snow leopard, wolf, lynx Lynx lynx and common leopard Panthera pardus. Keywords: Afghanistan; fur trade; human-wildlife conflict; hunting; Lynx; marco polo sheep; snow leopard; Wakhan; wolf; 5270
|
Mishra, C., Suryawanshi, K. (2014). Managing conflicts over livestock depradation by Large Carnivores. In SOUTH ASIAN ASSOCIATION FOR REGIONAL COOPERATION – Human-Wildlife Conflict in the Mountains of SAARC Region – Compilation of Successful Management Strategies and Practices (pp. 27–47).
Abstract: Managing wildlife-caused damage to human interests has become an important aspect of contemporary conservation management. Conflicts between pastoralism and carnivore conservation over livestock depredation pose a serious challenge to endangered carnivores worldwide, and have become an important livelihood concern locally. Here, we first review the primary causes of these conflicts, their socio-ecological correlates, and commonly employed mitigation measures. We then describe a community-based program to manage conflicts over livestock depredation by snow leopards Panthera uncia and wolves Canis lupus. A threats-based conceptual model of conflict management is presented. Conflicts over livestock depredation are characterized by complex, multi-scale interactions between carnivore and livestock behavioral ecology, animal husbandry, human psyche, culture, world-views, and socio-economic and education levels of affected peoples. A diversity of commonly employed conflict-mitigation measures is available. They aim at (i) reducing livestock depredation through better livestock herding, use of physical, chemical or psychological barriers, removal of carnivores, and use of livestock guard animals, (ii) offsetting economic losses through damage compensation and insurance programmes, and (iii) increasing peoples’ tolerance of carnivores through indirect approaches such as conservation education and economic incentives. For effective management, conflicts need to be understood along two important dimensions, viz., the reality of damage caused to humans, and the psyche and perceptions of humans who suffer wildlife caused damage. The efficacy of commonly used mitigation measures is variable. A combination of measures that reduce the level of livestock depredation, share or offset economic losses, and improve the social carrying capacity for carnivores will be more effective in managing conflicts than standalone measures
|
Mongolian Biosphere & Ecology Association. (2010). Mongolian Biosphere & Ecology Association Report March 2010.
Abstract: In accordance with order of the Ministry of Nature and Tourism,
zoologists of our association have made surveys in three ways such as reasons why snow leopards attack domestic animals, “Snow leopard” trial operation to count them and illegal hunting in territories of Khovd, Gobi-Altai, Bayankhongor, Uvurkhangai and Umnugobi provinces from September 2009 to January 2010. As result of these surveys it has made the following conclusions in the followings: Reason to hunt them illegally: the principal reason is that administrative units have been increased and territories of administrative units have been diminished. There have been four provinces in 1924 to 1926, 18 since 1965, 21 since 1990. Such situation limits movements of herdsmen completely and pastures digressed much than ever before. As result of such situation, 70% of pastures become desert. Such digression caused not only heads of animals and also number of species. Guarantee is that birds such as owls, cuckoo, willow grouse in banks of Uyert river, Burkhanbuudai mountain, located in Biger soum, Gobi-Altai province, which are not hunted by hunters, are disappearing in the recent two decades. For that reason we consider it is urgently necessary for the government to convert administrative unit structures into four provinces. This would influence herdsmen moving across hundreds km and pastures could depart from digression. Second reason: cooperative movement won. The issues related to management and strengthening of national cooperatives, considered by Central Committee of Mongolian People's Revolutionary Party in the meeting in March 1953 was the start of cooperatives' movement. Consideration by Yu. Tsedenbal, chairman of Ministers Council, chairman of the MPRP, on report "Result of to unify popular units and some important issues to maintain entity management of agricultural cooperatives" in the fourth meeting by the Central Committee of Mongolian People's Revolutionary Party /MPRP/ on December 16-17, 1959, proclaimed complete victory of cooperative. At the end of 1959, it could unify 767 small cooperative into 389 ones, unify 99.3 % of herdsmen and socialize 73.3 % of animals. The remaining of animals amount 6 million 163 thousands animals, and equals to 26.7% of total animals. This concerned number of animals related to the article mentioned that every family should have not more that 50 animals in Khangai zone and not more 75 animals in Gobi desert. It shows that such number could not satisfy needs of family if such number is divided into five main animals in separating with reproduction animals and adult animals. So herdsmen started hunt hoofed animals secretly and illegally in order to satisfy their meat needs. Those animals included main food of snow leopard such as ibex, wild sheep, and marmot. Third reason is that the state used to hunt ibex, which are main nutrition of snow leopards, every year. The administrative unit of the soum pursued policy to hunt ibex in order to provide meat needs of secondary schools and hospitals. That's why this affected decrease of ibex population. Preciously from 1986 to 1990 the permissions to hunt one thousands of wild sheep and two thousands of ibexes were hunt for domestic alimentary use every year. Not less than 10 local hunters of every soum used to take part in big game of ibexes. Also they hunted many ibexes, chose 3-10 best ibexes and hid them in the mountains for their consummation during hunting. Fourth reason: hunting of wolves. Until 1990 the state used to give prizes to hunter, who killed a wolf in any seasons of the year. Firstly it offered a sheep for the wolf hunter and later it gave 25 tugrugs /15 USD/. Every year, wolf hunting was organized several times especially picking wolf-cubs influenced spread and population of wolves. So snow leopard came to the places where wolves survived before and attack domestic animals. Such situation continued until 1990. Now population of ibexes has decreased than before 1990 since the state stopped hunting wolves, population of wolves increased in mountainous zones. We didn't consider it had been right since it was natural event. However population of ibexes decreased. Fifth reason: Global warming. In recent five years it has had a drought and natural disaster from excessive snow in the places where it has never had such natural disasters before. But Mongolia has 40 million heads of domestic animals it has never increased like such quantity in its history before. We consider it is not incorrect that decrease of domestic animals could give opportunities to raise population of wild animals. Our next survey is to make attempt to fix heads of snow leopards correctly with low costs. Keywords: nature; tourism; surveys; survey; snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; attack; domestic; Animals; Animal; illegal; illegal hunting; hunting; territory; province; 2010; hunt; 1990; movements; movement; pasture; desert; number; species; birds; river; mountain; hunters; hunter; recent; government; structure; management; national; central; people; Report; gobi; Gobi Desert; reproduction; Adult; meat; food; ibex; wild; wild sheep; sheep; marmot; nutrition; schools; population; use; local; big; big game; big-game; game; 310; mountains; wolves; wolf; Seasons; times; zones; global; Mongolia; 40; history; ecology
|
Namgail, T., Fox, J., & Bhatnagar, Y. (2007). Carnivore-Caused Livestock Mortality in Trans-Himalaya (Vol. 39).
Abstract: The loss of livestock to wild predators is an important livelihood concern among Trans-Himalayan pastoralists. Because of the remoteness and inaccessibility of the region, few studies have been carried out to quantify livestock depredation by wild predators. In the present study, we assessed the intensity of livestock depredation by snow leopard Uncia uncia, Tibetan wolf Canis lupus chanku, and Eurasian lynx Lynx l. isabellina in three villages, namely Gya, Rumtse, and Sasoma, within the proposed Gya-Miru Wildlife Sanctuary in Ladakh, India. The three villages reported losses of 295 animals to these carnivores during a period of 2.5 years ending in early 2003, which represents an annual loss rate of 2.9% of their livestock holdings. The Tibetan wolf was the most important predator, accounting for 60% of the total livestock loss because of predation, followed by snow leopard (38%) and lynx (2%). Domestic goat was the major victim (32%), followed by sheep (30%), yak (15%), and horse (13%). Wolves killed horses significantly more and goats less than would be expected from their relative abundance. Snow leopards also killed horses significantly more than expected, whereas they killed other livestock types in proportion to their abundance. The three villages combined incurred an estimated annual monetary loss of approximately $USD 12,120 amounting to approximately $USD 190/household/y. This relatively high total annual loss occurred primarily because of depredation of the most valuable livestock types such as yak and horse. Conservation actions should initially attempt to target decrease of predation on these large and valuable livestock species.
Keywords: Gya-Miru; livestock depredation; Lynx; snow leopard; trans-himalaya; wolf
|
Pal, R., Panwar, A., Goyal, S. P., Sathyakumar, S. (2022). Changes in ecological conditions may influence intraguild competition: inferring interaction patterns of snow leopard with co-predators. PeerJ, 10(e14277), 1–26.
Abstract: Background: Large-scale changes in habitat conditions due to human modifications and climate change require management practices to consider how species communities can alter amidst these changes. Understanding species interactions across the gradient of space, anthropogenic pressure, and season provide the opportunity to anticipate possible dynamics in the changing scenarios. We studied the interspecific interactions of carnivore species in a high-altitude ecosystem over seasonal (summer and winter) and resource gradients (livestock grazing) to assess the impact of changing abiotic and biotic settings on coexistence.
Methods: The study was conducted in the Upper Bhagirathi basin, Western Himalaya, India. We analyzed around 4 years of camera trap monitoring data to understand seasonal spatial and temporal interactions of the snow leopard with common leopard and woolly wolf were assessed in the greater and trans-Himalayan habitats, respectively. We used two species occupancy models to assess spatial interactions, and circadian activity patterns were used to assess seasonal temporal overlap amongst carnivores. In addition, we examined scats to understand the commonalities in prey selection. Results: The result showed that although snow leopard and wolves depend on the same limited prey species and show high temporal overlap, habitat heterogeneity and differential habitat use facilitate co-occurrence between these two predators. Snow leopard and common leopard were spatially independent in the summer. Conversely, the common leopard negatively influences the space use of snow leopard in the winter. Limited prey resources (lack of livestock), restricted space (due to snow cover), and similar activity patterns in winter might result in strong competition, causing these species to avoid each other on a spatial scale. The study showed that in addition to species traits and size, ecological settings also play a significant role in deciding the intensity of competition between large carnivores. Climate change and habitat shifts are predicted to increase the spatial overlap between snow leopard and co-predators in the future. In such scenarios, wolves and snow leopards may coexist in a topographically diverse environment, provided sufficient prey are available. However, shifts in tree line might lead to severe competition between common leopards and snow leopards, which could be detrimental to the latter. Further monitoring of resource use across abiotic and biotic environments may improve our understanding of how changing ecological conditions can affect resource partitioning between snow leopards and predators. |
Rana, B. S. (1997). Distinguishing kills of two large mammalian predators in Spiti Valley Himachal Pradesh. J.Bombay Nat.Hist.Soc, 94(3), 553.
Abstract: The author studied livestock killed by predators in the Spiti Valley, India, to determine what species had killed yaks, horses, donkeys, and other domestic animals. Eleven of the kills examined were made by snow leopards and six by the Tibetan wolf. Wolves were involved in surplus killings, while snow leopards kill as food is needed. lgh
Keywords: behavior; endangered; threatened species; foods; feeding; mammals; predation; wildlife; livestock relationships; snow leopard; Tibetan wolf; prey; livestock; India; panthera uncia; canis lupis; browse; threatened; species; relationships; tibetan; wolf; panthera; uncia; canis; lupis; 610
|
Schaller, G. (1988). Survey of Mountain Wildlife in Xinjiang, Report # 7. |
Schaller, G. (1988). Wildlife Survey in Tibet, Report #8. |
Schaller, G. B. (1987). Status of large mammals in the Taxkorgan Reserve, Xinjiang, China. Biological-Conservation, 42(1), 53–71.
Abstract: A status survey of large mammals was conducted in the W half of 14 000 km“SUP 2” Taxkorgan Reserve. Only one viable population of fewer than 150 Marco Polo sheep Ovis ammon poli survives; it appears to be augmented by adult males from Russia and Afghanistan during the winter rut. Asiatic ibex Capra ibex occur primarily in the western part of the reserve and blue sheep Pseudois nayaur – the most abundant wild ungulate – in the E and SE parts. The 2 species overlap in the area of contact. Counts revealed an average wild ungulate density of 0.34 animals km“SUP -2”. Snow leopard Panthera uncia were rare, with possibly 50-75 in the reserve, as were wolves Canis lupus and brown bear Ursus arctos. The principal spring food of snow leopard was blue sheep (60%) and marmot (29%). Local people have greatly decimated wildlife. Overgrazing by livestock and overuse of shrubs for fuelwood is turning this arid steppe habitat into desert. -from Authors
Keywords: Marco-Polo; sheep; Ovis-ammon-poli; Asiatic; ibex; Capra-ibex; blue-sheep; Pseudois-nayaur; snow; leopard; Panthera-uncia; wolf; Canis-lupus; brown; bear; Ursus-arctos; marmot; survey; status; China; Taxkorgan; reserve; capra ibex; snow leopard; blue; browse; marco polo; ovis; ammon; poli; capra; pseudois nayaur; panthera; uncia; canis; lupus; ursus arctos; 880
|
Shafiq, M. M., & Abid, A. (1998). Status of large mammal species in Khunjerab National Park. Pakistan Journal of Forestry, 48(1-4), 91–96.
Abstract: Study on the current status of large mammals species population was carried out in Khunjerab National Park, Northern Areas. The observation recorded showed that the population of Tibetan Red fox (Vulpes vulpes montana), Snow leopard (Uncia uncia), and Wolf (Canis lupus) have, though a bit, increased but are still in the rank of “Endangered”. While the population of Himalyan Ibex (Cpara ibex sibirica) is increasing more rapidly and their status is now “Common” in the Park. The limited population of Marcopolo sheep (Ovis ammon polii), Tibetan wild Ass (Equus hemionus kiang) and Brown bear (Urus arctos) is still under threat, and comes them under “Critical Endangered” category.
Keywords: Khunjerab-National-Park; large-mammals; endangered species; snow leopard; Uncia uncia; wolf; fox; ibex; sheep; bear; prey; predator; protected-area; Khunjerab; browse; national; park; large; mammals; endangered; species; uncia; protected; 560
|
Thapa, K., Rayamajhi, S. (2023). Anti-predator strategies of blue sheep (naur) under varied predator compositions: a comparison of snow leopard-inhabited valleys with and without wolves in Nepal. Wildlife Research, , 1–9.
Abstract: In Nepal, naur are usually the staple wild prey for the snow leopard, a solitary stalker hunter, and in some cases, for the wolf who hunts in a pack. We assumed that naur would adapt their anti-predatory responses to the presence of chasing and ambushing predators in the Manang Valley, where there are snow leopards and wolves, and in the Nar Phu valley, an area where there is only the snow leopard.
Aims. The aim of this study was to determine if there were differences in anti-predator strategies (vigilance, habitat selection and escape terrain) of naur in two valleys over two seasons, spring and autumn. Methods. In spring 2019, we conducted a reconnaissance survey on the status of the naur and its habitat in the Manang and Nar Phu valleys of the Annapurna Conservation Area, Nepal. In spring and autumn 2020 and 2021, we observed 360 focal naur individuals (180 individuals in each valley), using the vigilance behaviour methodology to examine the behaviour of the naur. Key results. There was little difference in the size of the naur groups between the Manang and Nar Phu valleys. The naur were twice as vigilant in Manang (15%), where there are snow leopards and wolves, as they were in Nar Phu (9%), with only snow leopards. The distance from the naur to escape cover was significantly shorter in Manang than in Nar Phu valley. Naur used significantly more rolling terrain in Nar Phu than in Manang. Conclusions. The return of wolves to the Manang valley may have resulted in an increase in the level of naur vigilance. Most likely, the wolves in Manang have already had an effect on the female-to-young-ratio, and this effect will possibly have important consequences for the naur population, as well as at the ecosystem level in the future. Other key determining factors, such as the climate crisis and changes in local resources, could have a significant impact on the naur population, indicating the need for more research. Implications. The findings of this study would provide valuable baseline information for the design of a science-based conservation strategy for conservation managers and scientists on naur, snow leopards and wolves. |