Home | << 1 >> |
Ale S. (2005). Have snow leopards made a comeback to the Everest region of Nepal?.
Abstract: In the 1960s, the endangered snow leopard was locally extirpated from the Sagarmatha (Mt. Everest) region of Nepal. In this Sherpa-inhabited high Himalaya, the flourishing tourism since the ascent of Mt Everest in 1953, has caused both prosperity and adverse impacts, the concern that catalyzed the establishment of Mt. Everest National Park in the region in 1976. In the late 1980s, there were reports that some transient snow leopards may have visited the area from adjoining Tibet, but no biological surveys exist to confirm the status of the cats and their prey. Have snow leopards finally returned to the top of the world? Exploring this question was the main purpose of this research project. We systematically walked altogether 24 sign transects covering over 13 km in length in three valleys, i.e. Namche, Phortse and Gokyo, of the park, and counted several snow leopard signs. The results indicated that snow leopards have made a comeback in the park in response to decades of protective measures, the virtual cessation of hunting and the recovery of the Himalayan tahr which is snow leopard's prey. The average sign density (4.2 signs/km and 2.5 sign sites/km) was comparable to that reported from other parts of the cats' range in the Himalaya. On this basis, we estimated the cat density in the Everest region between 1 to 3 cats per 100 sq km, a figure that was supported by different sets of pugmarks and actual sightings of snow leopards in the 60 km2 sample survey area. In the study area, tahr population had a low reproductive rate (e.g. kids-to-females ratio, 0.1, in Namche). Since predators can influence the size and the structure of prey species populations through mortality and through non-lethal effects or predation risk, snow leopards could have been the cause of the population dynamics of tahr in Sagarmtha, but this study could not confirm this speculation for which further probing may be required.
Keywords: snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; region; Nepal; Report; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; 1960; endangered; Sagarmatha; High; Himalaya; tourism; impact; establishment; national; national park; National-park; park; 1980; area; Tibet; surveys; survey; status; Cats; cat; prey; research; project; sign; transects; transect; length; valley; Response; hunting; recovery; Himalayan; tahr; density; densities; range; pugmarks; sighting; 60; study; population; predators; predator; structure; prey species; prey-species; species; populations; mortality; effects; predation; population dynamics
|
Ale, S. B., Yonzon, P., & Thapa, K. (2007). Recovery of snow leopard Uncia uncia in Sagarmatha (Mount Everest) National Park, Nepal (Vol. 41).
Abstract: From September to November 2004 we conducted surveys of snow leopard Uncia uncia signs in three major valleys in Sagarmatha (Mount Everest) National Park in Nepal using the Snow Leopard Information Management System, a standardized survey technique for snow leopard research. We walked 24 transects covering c. 14 km and located 33 sites with 56 snow leopard signs, and 17 signs incidentally in other areas. Snow leopards appear to have re-inhabited the Park, following their disappearance c. 40 years ago, apparently following the recovery of Himalayan tahr Hemitragus jemlahicus and musk deer Moschus chrysogaster populations. Taken together the locations of all 73 recent snow leopard signs indicate that the species is using predominantly grazing land and shrubland/ open forest at elevations of 3,000-5,000 m, habitat types that are also used by domestic and wild ungulates. Sagarmatha is the homeland of c. 3,500 Buddhist Sherpas with .3,000 livestock. Along with tourism and associated developments in Sagarmatha, traditional land use practices could be used to ensure coexistence of livestock and wildlife, including the recovering snow leopards, and ensure the wellbeing of the Sherpas.
Keywords: Nepal; recovery; Sagarmatha Mount Everest National Park; snow leopard; Uncia uncia; surveys; survey; snow; snow-leopard; leopard; uncia; Uncia-uncia; valley; Sagarmatha; national; national park; National-park; park; using; information; management; system; research; transects; transect; sign; areas; area; snow leopards; snow-leopards; leopards; 40; Himalayan; tahr; musk; musk-deer; deer; location; recent; species; grazing; land; Forest; habitat; domestic; wild; ungulates; ungulate; livestock; tourism; development; traditional; land use; land-use; use; wildlife
|
Bagchi, S., Mishra, C., & Bhatnagar, Y. (2004). Conflicts between traditional pastoralism and conservation of Himalayan ibex (Capra sibirica) in the Trans-Himalayan mountains. Animal Conservation, 7, 121–128.
Abstract: There is recent evidence to suggest that domestic livestock deplete the density and diversity of wild herbivores in the cold deserts of the Trans-Himalaya by imposing resource limitations. To ascertain the degree and nature of threats faced by Himalayan ibex (Capra sibirica) from seven livestock species, we studied their resource use patterns over space, habitat and food dimensions in the pastures of Pin Valley National Park in the Spiti region of the Indian Himalaya. Species diet profiles were obtained by direct observations. We assessed the similarity in habitat use and diets of ibex and livestock using Non-Metric Multidimensional Scaling. We estimated the influence of the spatial distribution of livestock on habitat and diet choice of ibex by examining their co-occurrence patterns in cells overlaid on the pastures. The observed co-occurrence of ibex and livestock in cells was compared with null-models generated through Monte Carlo simulations. The results suggest that goats and sheep impose resource limitations on ibex and exclude them from certain pastures. In the remaining suitable habitat, ibex share forage with horses. Ibex remained relatively unaffected by other livestock such as yaks, donkeys and cattle. However, most livestock removed large amounts of forage from the pastures (nearly 250 kg of dry matter/day by certain species), thereby reducing forage availability for ibex. Pertinent conservation issues are discussed in the light of multiple-use of parks and current socio-economic transitions in the region, which call for integrating social and ecological feedback into management planning.
Keywords: conflicts; traditional pastoralism; himalayan ibex; ibex; capra sibirica; trans-himalayan mountains; pin valley national park; spiti region; non-metric multidimensional scaling; snow leopard; wolf; wild dog; Lynx; wild ass; Tibetan argali; Tibetan antelope; Tibetan gazelle; urial; bharal; Pin River; pin valley; Parahio; goat; sheep; Cattle; horses; yaks; donkeys; diet; free-ranging horses; herded horses; grazing; 5290
|
Bhatnagar, Y. V. (1997). Ranging and Habitat Use by Himalayan Ibex (Capra ibex sibirica) in Pin Valley National Park. Ph.D. thesis, Saurashtra University, . |
Jackson, R. (1999). Snow Leopards, Local People and Livestock Losses: Finding solutions using Appreciative Participatory Planning and Action (APPA) in the Markha Valley of Hemis National Park, Ladakh, October 6-26, 1999. Cat News, 31(Autumn), 22–23.
Abstract: Livestock depredation is emerging as a significant issue across the Himalaya, including the Hemis National Park (HNP) in Ladakh. Some consider that this protected area harbors the best snow leopard population in India, but local herders perceive the endangered snow leopard as a serious threat to their livelihood.
Keywords: snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; local; local people; people; livestock; loss; using; participatory; planning; action; valley; Hemis; national; national park; National-park; park; Ladakh
|
Khan, A. (2004). Snow Leopard Occurrence in Mankial Valley, Swat: Final report.
Abstract: Mankial is a sub-valley of the Swat Kohistan. Temperate ecosystem of the valley is intact to a greater extent, which provides habitat to a variety of species of plants, animals and birds. Snow leopard is reported from the valley. To confirm its occurrence, the HUJRA (Holistic Understanding for Justified Research and Action), conducted the study titled “Snow Leopard Survey in Mankial Valley, district Swat, NWFP”. The author provided technical support, while ISLT (The International Snow Leopard Trust) funded the project under its small grants program. The World Wide Fund for Nature-Pakistan (WWF-Pakistan) and the Mankial Community Organization (MCO) facilitated surveys under the project. Surveys revealed that Snow leopard visits parts of the Mankial valley in winter months. Information from the local community shows that Snow leopard remains in the Serai (an off-shoot of the Mankial Valley) from early winter to early spring. Intensive surveys of the prime snow leopard winter habitat in the valley found several snow leopard signs including pugmarks, feces, and scrapes. The study also found occurrence of prey species through indirect evidence though. However, information from the local community confirmed that in the recent past there was a good population of markhor in the valley, which is now reduced to less than 50, mostly due to hunting and habitat disturbance. Hunting is part of the local culture and lifestyle. During winter months hunting pressure is low, as most of the local community migrates to warmer plain areas than Mankial Valley. However, those who live in the area lop oak branches for feeding their livestock and cut trees for burning, in addition to hunting prey species of snow leopard. This has resulted in stunted oak vegetation in most of the lower reaches of the valley and decline of the markhor population.
Keywords: snow; snow leopard; snow-leopard; leopard; valley; Report; project; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; ecosystem; habitat; species; plants; plant; Animals; Animal; birds; research; action; study; survey; Support; Islt; community; Organization; surveys; winter; information; local; sign; pugmarks; feces; scrapes; scrape; prey; prey species; prey-species; recent; population; markhor; hunting; Culture; Pressure; areas; area; feeding; livestock; burning; decline
|
Ming, M. (1985). Expedition to Murzat River Valley. Urumqi Evening Paper. |
Mishra, C., Madhusudan, M. D., & Datta, A. (2006). Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs (Vol. 40).
Abstract: The high altitudes of Arunachal Pradesh,India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12 carnivores, 10 ungulates and 5 primates) were recorded, of which 13 are categorized as Endangered or Vulnerable on the IUCN Red List. One species of primate, the Arunachal macaque Macaca munzala, is new to science and the Chinese goral Nemorhaedus caudatus is a new addition to the ungulate fauna of the Indian subcontinent. We documented peoples' dependence on natural resources for grazing and extraction of timber and medicinal plants. The region's mammals are threatened by widespread hunting. The snow leopard Uncia uncia and dhole Cuon alpinus are also persecuted in retaliation for livestock depredation. The tiger Panthera tigris, earlier reported from the lower valleys, is now apparently extinct there, and range reductions over the last two decades are reported for bharal Pseudois nayaur and musk deer Moschus sp.. Based on mammal species richness, extent of high altitude habitat, and levels of anthropogenic disturbance, we identified a potential site for the creation of Arunachal's first high altitude wildlife reserve (815 km2). Community-based efforts that provide incentives for conservation-friendly practices could work in this area, and conservation awareness programmes are required, not just amongst the local communities and schools but for politicians, bureaucrats and the army.
Keywords: anthropogenic; area; Arunachal; assessment; awareness; bharal; biodiversity; carnivore; carnivores; community; community-based; conservation; deer; depredation; dhole; endangered; extinct; fauna; goral; grazing; habitat; habitats; High; Himalaya; hunting; incentives; India; indian; Iucn; leopard; livestock; livestock-depredation; livestock depredation; local; mammals; musk; musk-deer; nayaur; panthera; people; peoples; plant; plants; potential; Pseudois; Pseudois-nayaur; pseudois nayaur; range; recent; region; Report; reserve; resource; schools; snow; snow-leopard; snow leopard; species; survey; surveys; threat; threatened; threats; tiger; uncia; Uncia-uncia; Uncia uncia; ungulate; ungulates; valley; wildlife; work; Panthera-tigris; tigris
|
Murali, R., Bijoor, A., Thinley, T., Gurmet, K., Chunit, K., Tobge, R., Thuktan, T., Suryawanshi, K., Nagendra, H., Mishra, C. (2022). Indigenous governance structures for maintaining an ecosystem service in an agro-pastoral community in the Indian Trans Himalaya. Ecosystems and People, 18(1), 303–314.
Abstract: The majority of the global terrestrial biodiversity occurs on indigenous lands, and biodiversity decline on these lands is relatively slower. Yet, robust understanding of indigenous governance systems for biodiversity and ecosystem services remains a key knowledge gap. We used the socio-ecological systems framework to study the governance of ecosystem services (ES) by an indigenous community in the Village of Kibber in the Trans-Himalayan Mountains of India. Focusing on plant-biomass removal from communal pastures, we identified the main factors shaping local governance using in-depth focal and deliberative group discussions with community members. Notwithstanding inequities of caste and gender, we found that Kibber had a well-functioning, complex, relatively democratic and inclusive system, with all households of the village involved in decision-making related to ES governance. Robust systems of information sharing, monitoring, conflict resolution, and self-organization played an important role. We found the role of institutional memory sustained by the oracle to be critical in maintaining governance structures. Our work underscores the potential resilience and importance of indigenous systems for the governance of ecosystem services.
Keywords: Commons; local governance; plant-harvest; rangelands; Spiti Valley
|
Nath, A. (1982). Some observations on wildlife in the Upper Suru/Northern Zanskar/Markha Valley of Ladakh. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards, Vol. 3 (Vol. 3, pp. 11–24). Helsinki: Helsinki Zoo. |
Poyarkov, A. D., Samoylova, G. S., & Subbotin, A. E. (2002). Evaluation of Potential Habitats of Snow Leopard (Uncia Uncia, Schreb.) In Altay-Khangay-Sayan Region and in Territory of Russian Federation: GIS Approach.. Islt: Islt. |
Prokopov K.P. (1990). Taxonomic list of mammal fauna of eastern Kazakhstan (Vol. Vol. I.).
Abstract: During the period 1965 through 1988, studies were conducted in the north-east of Kazakhstan (Kazakhstan's Altai, Zaisan depression, Saur-Tarbagatai) and list of mammals (104 species) for the area made.
Keywords: Kazakhstan; Altai; Zaisan valley; Saur-Tarbagatai; mammals; snow leopard.; 7990; Russian
|
Rawat, G. S., Pandey, S., & Panwar, H. S. (1994). Eco-development and management needs for snow leopard conservation in Himalayan Protected Areas. In J.L.Fox, & D.Jizeng (Eds.), (pp. 297–303). Usa: Islt. |
Saeed, U., Arshad, M., Hayat, S., Morelli, T. L., Nawaz, M. A. (2022). Analysis of provisioning ecosystem services and perceptions of climate change for indigenous communities in the Western Himalayan Gurez Valley, Pakistan. Ecosytem Services, 56(101453), 1–12.
Abstract: Climate change is a significant threat to people living in mountainous regions. It is essential to understand how montane communities currently depend especially on the provisioning ecosystem services (ES) and the ways in which climate change will impact these services, so that people can develop relevant adaptation strategies. The ES in the Gurez Valley, in the Western Himalayas of Pakistan, provide a unique opportunity to explore these questions. This understudied area is increasingly exposed not only to climate change but also to the over- exploitation of resources. Hence, this study aimed to (a) identify and value provisioning ES in the region; (b) delineate indigenous communities’ reliance on ES based on valuation; and (c) measure the perceptions of indigenous communities of the impact of climate change on the ES in Gurez Valley. Semi-structured interviews and focus group discussions were used to classify the provisioning ES by using the ‘Common International Classification on Ecosystem Services’ (CICES) table and applying the ‘Total Economic Valuation (TEV)’ Frame- work. Results indicate that the indigenous communities are highly dependent on ES, worth 6730 ± 520 USD/ Household (HH)/yr, and perceive climate change as a looming threat to water, crops, and rearing livestock ESS in the Gurez Valley. The total economic value of the provisioning ES is 3.1 times higher than a household’s average income. Medicinal plant collection is a significant source of revenue in the Valley for some households, i.e., worth 766 ± 134.8 USD/HH/yr. The benefits of the sustainable use of ES and of climate change adaptation and mitigation, are culturally, economically, and ecologically substantial for the Western Himalayans.
|
Thapa, K. (2005). Is their any correlation between abundance of blue sheep population and livestock depredation by snow leopards in the Phu Valley, Manang District, Annapurna Conservation Area? Final report.
Abstract: This study was undertaken in the Phu valley of Manang district in the Annapurna Conservation Area, Nepal,
Spring, 2004 and 2005. I used the Snow Leopard Management Information System (“second order” survey technique), to determine the relative abundance of snow leopards in delineated areas in Phu valley. Transects routes were plotted by randomly selected feasible landforms such as along ridgelines, cliff bases and river bluffs where snow leopards sign is likely to be found. Altogether, 16 transects (total length of 7.912 km) were laid down (mean transect length=0.495 km). They revealed, 54 sign sites (both relic and non-relic) and altogether 88 signs (72 scrapes, 11 feces, 3 scent mark, 2 pugmarks and 1 hair) were recorded (6.8 site/km and 11.1 signs/km). There were 61.1% non-relic and 38.9% relic sites. The density of snow leopards in Phu Valley may be 4-5 snow leopards/100 kmý.It was found that the Ghyo block had the highest sign density (13.6 mean sign item/km) and Phu block (9.8 mean sign item/km) and the lowest in Ngoru block (3.9 mean sign item/km.). For blue sheep, direct count method was applied from different appropriate vantage points (fixed-point count). I counted total individuals in each herd and classified all individuals whenever possible, using 8 X24 binocular and 15-60x spotting scope. A total 37 blue sheep herds and 1209 individuals were observed in 192.25 kmý of the study area (blue sheep density, 6.3 kmý). Average herd size was 32.68. Herd size varied from 1 to 103 animals (the largest so far recorded). The average sex ratio male to female for the entire survey area was 0.67. Recruitment rate was 47.13. The ratio of yearlings to adult female was 0.45. In Ghyo block had total 168 blue sheep (area, 44.08 km2 or 3.8/ km2 i.e. 137.2 kg/ kmý). Blue sheep density in Ngoru block showed 4.7/km2 (area, 65.47 km2). Highest density of blue sheep among three blocks was recorded in Phu block, 8.9/km2 (or 320 kg/km2) in its 82.70 km2 area. A standard questionnaire was designed, and interviews conducted for relevant information was collected on livestock depredation patterns (total household survey). Out of 33 households surveyed, 30 reported that they had livestock depredation by the snow leopard in 2004. Altogether 58 animals were reportedly lost to snow leopards (3.1% of the total mortality). Out of the estimated standing available biomass (1, 83,483kg) in the Phu valley at least 2220 kg or 1.3% of the total livestock biomass was consumed by snow leopards in the year of our study (2004). It was estimated that in the Phu valley annually 1.8 animals were lost per household to snow leopards. This means approx. Rs.413560 (US$ 5,908) is lost annually in the valley (US$ 179/household/annum). Ghyo block, had the highest animals loss (53.4%), followed by Phu block (36.2%) and Ngoru block (10.3%) to snow leopards. There is positive correlation among the densities of blue sheep, relative abundance of the snow leopard and livestock depredation. Blue sheep is the main prey species of the snow leopard in Phu valley and its conservation therefore matters to reduce livestock depredation. A general patterns appears here that shows that blue sheep (prey) abundance determine snow leopard (predator) abundance and that livestock depredation by snow leopards may be minimal where there is good population of blue sheep, and vice versa. Keywords: abundance; blue; blue sheep; blue-sheep; sheep; population; livestock; livestock depredation; livestock-depredation; depredation; snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; valley; Manang; annapurna; annapurna conservation area; Annapurna-Conservation-Area; conservation; area; Report; project; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; Nepal
|
The Snow Leopard Conservancy. (2002). Visitor Satisfaction and Opportunity Survey, Manang, Nepal: Market Opportunities for Linking Community-Based Ecotourism with the Conservation of Snow Leopards in the Annpurna Conservation Area. Report prepared for WWF-Nepal Programme (Vol. SLC Field Document Series No 3).
Abstract: For the past two decades, the Manang or Nyeshang Valley has become one of the most popular
trekking routes in Nepal, attracting over 15,000 trekkers annually (Ale, 2001). The 21-day circular trek takes the visitor from the lush southern slopes of the Annapurna massif around to its dry northern slopes more reminiscent of Tibet, through a landscape of spectacular mountain scenes, interesting villages and diverse cultures. The Manang region also offers prime habitat for the endangered snow leopard, supporting an estimated 4.8 – 6.7 snow leopards per 100 sq. km (Oli 1992). This high density has been attributed to the abundance of blue sheep, the snow leopard's primary large prey species across the Himalayan Mountains and Tibetan Plateau. Keywords: survey; Manang; Nepal; linking; community-based; ecotourism; conservation; snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; area; Report; valley; trekking; Southern; annapurna; Tibet; landscape; mountain; Culture; region; habitat; endangered; High; density; densities; abundance; blue; blue sheep; blue-sheep; sheep; primary; large; prey; prey species; prey-species; species; Himalayan; mountains; tibetan; tibetan plateau; tibetan-plateau; plateau
|
Tiwari, M. P., Devkota, B. P., Jackson, R. M., Chhetri, B. B.
K., Bagale, S. (2020). What Factors Predispose Households in Trans-Himalaya (Central
Nepal) to Livestock Predation by Snow Leopards? Animals, 10(2187), 1–14.
Abstract: Livestock depredation across the trans-Himalaya causes
significant economic losses to pastoralist communities. Quantification of livestock predation and the assessment of variables associated with depredation are crucial for designing effective long-term mitigation measures. We investigated the patterns and factors of livestock depredation by snow leopards (Panthera uncia) using semi-structured questionnaires targeting herders in the Narphu valley of the Annapurna Conservation Area, Nepal. During the two years (2017/18 and 2018/19), 73.9% of the households interviewed (n = 65) lost livestock to snow leopards, with an annual average loss of two livestock per household. Of the total depredation attributed to snow leopards, 55.4% were yak (mainly female: 79%), 31.7% goat, 6.8% sheep, 3.2% horse and 2.8% cattle. Results from applying Generalized Linear Mixed Models (GLMMs) revealed the total number of livestock owned and the number of larger bodied livestock species as the main explanatory covariates explaining livestock depredation. Forty-one (41%) of all herders considered snow leopard’s preference for domestic livestock as the main factor in livestock predation, whereas only 5% perceived poor herding practice as the main reason for the loss. Our study found poor and changing herding practices in the valley, whereby 71% herders reported careful herding as a solution to snow leopard depredation, and 15% of herders considered the complete extermination of snow leopards as the best solution to the problem. Tolerance levels and awareness among herders towards snow leopard conservation is increasing, mainly due to the Buddhist religion and strict law enforcement within this protected area. We recommend the effective implementation of a community-based livestock insurance scheme to compensate the economic loss of herders due to predation and improved herding practices as the recommended mitigation measures for ensuring livestock security and snow leopards’ conservation in the valley. |
ud Din, J. (2008). Assessing the Status of Snow Leopard in Torkhow Valley, District Chitral, Pakistan: Final Technical Report.
Abstract: This study was aimed at assessing the status of Snow leopard, its major prey base, and the extent of human-Snow leopard conflict and major threats to the wildlife in north Chitral (Torkhow valley) Pakistan. Snow leopard occurrence was conformed through sign transect surveys i.e. SLIMS. Based on the data collected the number of Snow leopards in this survey block (1022 Kmý) is estimated to be 2-3 animals. Comparing this estimate with the available data from other parts of the district the population of snow leopard in Chitral district was count to be 36 animals. Livestock depredation reports collected from the area reflect the existence of human-snow leopard conflict and 138 cases were recorded affecting 102 families (in a period of eight years, 2001-2008). Ungulates (Himalayan Ibex) rut season surveys were conducted in coordination with NWFP Wildlife department. A total of 429 animals were counted using direct count (point method) surveys. Other snow leopard prey species recorded include marmot, hare, and game birds. Signs of other carnivores i.e. wolf, jackal, and fox were also noticed. Major threats to the survival of wildlife especially snow leopard reckoned include retaliatory killing (Shooting, Poisoning), poaching, loss of natural prey, habitat degradation (over grazing, fodder and fuel wood collection), lack of awareness, and over population. GIS map of the study area was developed highlighting the area searched for Snow leopard and its prey species. Capacity of the Wildlife Department staff was built in conducting SLIMS and ungulate surveys through class room and on field training. Awareness regarding the importance of wildlife conservation was highlighted to the students, teachers and general community through lectures and distribution of resource materials developed by WWF-Pakistan.
Keywords: status; snow; snow leopard; snow-leopard; leopard; valley; chitral; Pakistan; Report; study; prey; Base; conflict; threats; threat; wildlife; sign; transect; surveys; survey; Slims; Data; number; snow leopards; snow-leopards; leopards; Animals; Animal; population; livestock; livestock depredation; livestock-depredation; depredation; area; Case; ungulates; ungulate; Himalayan; himalayan ibex; ibex; rut; using; prey species; prey-species; species; marmot; game; birds; carnivores; carnivore; wolf; wolves; jackal; fox; survival; retaliatory; retaliatory killing; retaliatory-killing; killing; poisoning; poaching; loss; habitat; habitat degradation; habitat-degradation; degradation; grazing; collection; awareness; Gis; map; staff; field; training; conservation; community; distribution; resource; project; network; program
|
Vorobjov G.G.& Ostastshenko A.N. (2002). The winter distribution of the ibex (Capra sibirica) and wild boar (Sus scrofa) in the Chatkal River Basin.
Abstract: There are 3 independent groups of the ibex in the Chatkal River basin and 2 ones of the wild boar. Therefore the populations of these animals are vulnerable in wintertime. The wild sheep (Ivis …••Œ‹) wide distributed in Chatkal valley earlier has not been found out. Pskem population of ibex is assessed as 30 individuals, Chandalash population as 450 ibexes and Chatkal population is assessed less than 200 individuals. Number of wild boar in Pskem ridge is 200 individuals; total number of Chandalash population is 20-25 boars.
Keywords: Kyrgyzstan; Chatlal valley; distribution; number; Siberian ibex; wild boar.; 8530; Russian
|
Xu, F., Ming, M., Yin, S. -jing, Chundawat R.S., Marden, & Nui, Y. (2006). Preliminary Study on the Habitat Selection of Uncia uncia (Vol. 23).
Abstract: Uncia uncia is one of the rare large species on the brink of extinction in Felidae in the world, and inhabit only the Central Asian mountains. It is said that there are currently only 4500-7300 Uncia uncia surviving. During the period from September 2004 to July 2005, the habitat selection of Uncia uncia was investigated in some mountains in Xinjiang, including the eastern Tianshan Mountains, Beita Mountains, Altay Mounts and Mount Tumor National Nature Reserve. In several months of fieldwork, we got 171 sign samples of Uncia uncia and 123 random samples in total. Five habitat features, i.e., the elevation, topographic features, vegetation type, grazing status and ruggedness, are selected to compare the difference of selectivity of the Uncia uncia habitat selection. The Chi-square goodness-of-fit test and the binomial test are used to check the significance of Uncia uncia habitat selection, and the principal component analysis is used to find the primary factors in in the selection. The result s are as follows : (1) Uncia uncia selected all kinds of the habitat types , especially the elevation , topography , vegetation types and ruggedness ; (2) Ruggedness and the vegetation types are the preliminary factors for the habitat selection. Topography is the secondary factor ; (3) Uncia uncia prefer to inhabit in the rugged habitat s with moderate shrubberies , and they also like to leave signs in valley bottoms rather than hillsides.
Keywords: study; habitat; Habitat selection; selection; uncia; Uncia uncia; Uncia-uncia; Chinese; research; large; species; extinction; Felidae; central; mountains; mountain; Xinjiang; Tianshan Mountains; Altay; national; nature; reserve; fieldwork; sign; grazing; status; Test; analysis; primary; factor; topography; valley
|
Xu, F., Ming, M., Yin, S. -jing, & Mardan. (2005). Snow Leopard Survey in Tumor Nature Reserve, Xingjiang (Vol. 24).
Abstract: Snow leopard survey was conducted in Oct-Nov 2004 at Tumor National Natural Reserve, Xinjiang, China. Because of its special living style, the snow leopard is difficult to observe by sight. Signs left by snow leopard become a good index to prove the existance of the big cat. There are mainly five kinds of signs, footprints, fectes, claw rakes and urine spray. From them we can know the distribution, probably population and habitat selection of snow leopard. This time in Tumor we investigated 5 difference places: Pochenzi in Mozat River area, Boxidun in Little Kuzbay River area, Yinyer in Tomur River area, Kurgan and Taglak in Quiong Tailan River area. 42 transects were run in this trip and a total of 57 signs found. Among them, footprints amounted to 71.9%, scrapes 21.1%, and feces 7.0%. The results showed that the big cat existed in Yinyer, Kurgan and Taglak areas and liked to select their habitat in the valley and didn't like to live in barren areas.
|
Xu, F., Ming, M., Yin, S. -jing, & Munkhtsog, B. (2006). Autumn Habitat Selection by Snow Leopard (Uncia uncia) in Beita Mountain, Xinjiang, China.
Abstract: Habitat selection of Snow Leopard ( Unica unica) in Beita Mountain of the Altay Mountain system in northeast Xinjiang was conducted from September to October 2004. Six habitat features of 59 sites used by Snow Leopard and 30 random plots were measured by locating 15 transects surveys in the study area . Vanderploge and Scaviaps selectivity index was used to assess Snow Leopardps selection for the different habitat parameters. Principal Component Analysis was used as the primary factor . The results indicated that Snow Leopard preferred the altitude between 2000 – 2 200 m and avoided 2 600 – 3 000 m ; selected cliff base , ridgeline and avoided hillside and valley bottom ; utilized the shrub and rejected the forest ; selected the nongrazing area and avoided the slightly broken region ; preferred north orientation and rejected the south orientation. The results show that grazing status , vegetation type , topography and the ruggedness are the primary factors for the habitat selection of Snow Leopard.
Keywords: habitat; Habitat selection; selection; snow; snow leopard; snow-leopard; leopard; uncia; Uncia uncia; Uncia-uncia; mountain; Xinjiang; China; Chinese; Altay; mountain system; system; 30; transects; transect; surveys; survey; study; area; analysis; primary; factor; 200; 600; Base; valley; Forest; region; south; grazing; status; topography
|
Zakirov A. (1974). Cats.
Abstract: It describes a fauna complex of the Fergana valley in Uzbekistan. Three cat family species are found there (wild cat, Turkistan lynx and snow leopard). Snow leopard (Uncia uncia) inhabits eastern part of the Chatkal ridge in the mountains of Akchala. Known are cases of snow leopard's preying on sheep in summer but such cases are extremely rare and the harm is negligent. This is a highly endangered species and therefore full prohibition of shooting the animals is required.
Keywords: Uzbekistan; Ferghana valley; mammals; Cats; snow leopard; distribution.; 8680; Russian
|