Home | << 1 2 >> |
Ale, S. B., Yonzon, P., & Thapa, K. (2007). Recovery of snow leopard Uncia uncia in Sagarmatha (Mount Everest) National Park, Nepal (Vol. 41).
Abstract: From September to November 2004 we conducted surveys of snow leopard Uncia uncia signs in three major valleys in Sagarmatha (Mount Everest) National Park in Nepal using the Snow Leopard Information Management System, a standardized survey technique for snow leopard research. We walked 24 transects covering c. 14 km and located 33 sites with 56 snow leopard signs, and 17 signs incidentally in other areas. Snow leopards appear to have re-inhabited the Park, following their disappearance c. 40 years ago, apparently following the recovery of Himalayan tahr Hemitragus jemlahicus and musk deer Moschus chrysogaster populations. Taken together the locations of all 73 recent snow leopard signs indicate that the species is using predominantly grazing land and shrubland/ open forest at elevations of 3,000-5,000 m, habitat types that are also used by domestic and wild ungulates. Sagarmatha is the homeland of c. 3,500 Buddhist Sherpas with .3,000 livestock. Along with tourism and associated developments in Sagarmatha, traditional land use practices could be used to ensure coexistence of livestock and wildlife, including the recovering snow leopards, and ensure the wellbeing of the Sherpas.
Keywords: Nepal; recovery; Sagarmatha Mount Everest National Park; snow leopard; Uncia uncia; surveys; survey; snow; snow-leopard; leopard; uncia; Uncia-uncia; valley; Sagarmatha; national; national park; National-park; park; using; information; management; system; research; transects; transect; sign; areas; area; snow leopards; snow-leopards; leopards; 40; Himalayan; tahr; musk; musk-deer; deer; location; recent; species; grazing; land; Forest; habitat; domestic; wild; ungulates; ungulate; livestock; tourism; development; traditional; land use; land-use; use; wildlife
|
Bhatnagar, Y. V., Stakrey, R. W., & Jackson, R. (2000). A Survey of Depredation and Related Wildlife-Human Conflicts in Hemis National Park, Ladakh (India) (Vol. xvi). Seattle: Islt. |
Braden, K. E. (1988). Economic Development in Six Regions of Snow Leopard Habitat in the U.S.S.R. In H.Freeman (Ed.), (pp. 227–246). India: International Snow Leopard Trust and the Wildlife Institute of India.
Abstract: The Disappearance of traditional ungulate prey of the snow leopard may be contributing to its endangered status in the wild. Soviet biologists have noted that wild sheep are a primary prey of the snow leopard in the southern Russian union republic and the Central Asian union republic of the U.S.S.R. While poaching appears to have had some impact on the status of these sheep, econmic pressures may be contributing to their decrease. Evidence presented for KAzakhstan and three regions of the Russian republic demonstrates that commercial sheep and goat production appears to be growing at a very high pace in these areas, thus consumming habitat otherwise available for wild herds.
|
Chundawat, R. S., & Rawat G.S. (1990). Food Habits of Snow Leopard in Ladakh, India.
Abstract: The snow leopard has remained little studied in the past, and most of the information available is either in the form of natural history or anecdotal notes. The inaccessibility of the terrain and its secretive habits make this one of the more difficult animals to study in the wild. In the past decade, several ecological surveys were conducted in India, Nepal, China and Mongolia, which gave us information on the status and distribution of snow leopard (Jackson, Mallon, Fox, Schaller, Chundawat) A detailed study in Nepal through light on its secretive habits ( Jackson and Ahlborn, 1989). Even then little is known about its feeding habits. The present paper discusses this aspect from a study which was part of a detailed study conducted on the ecology of snow leopard in India from October 1987 to Feburary 1990.
|
Dementiev G.P. (1967). Quadrupeds inhabitants of the mountains.
Abstract: All species inhabiting the highlands of Asia are normally referred to as herbivorous or predators. A majority of alpine land species (rodents and ungulates) feeds upon leaves, stalks, and roots of plants. Among widely distributed highland species the most interesting are marmots, red pica, grey vole, argali, and ibex. Argali and ibex are preyed on by snow leopards. There are reasons to believe that these mountain animal species are more ancient than their cognates in a plain. All the way from Central Asia to Europe, species belonging to the eastern and western fauna complexes are observed to interpenetrate.
Keywords: asia; mountain fauna; endemics; species range; rodents; ungulates; carnivores; marmots; pikas; voles; ibex; mountain sheep; snow leopard.; 6480; Russian
|
Egorov O.V. (1955). Enemies, infections, parasites and mortality rate of ibex (Vol. Vol. 42.).
Abstract: Reasons for ibex and argali mortality from natural enemies, parasites, infections, accidents, and hunters are analyzed. Snow leopard is one of the most dangerous enemies of ibex and argali, preying equally on both young and mature animals (mostly males). Snow leopard feeds upon ibex all year round. Unlike wolf, snow leopard would never kill several animals at a time, but only one selected victim. The food remains left by these predators are different in terms of the skull gnawing. Nasal bones and eye-sockets on the skull of ibex killed by snow leopard remain undamaged, while wolf gnaws off nasal part of the skull, breaks eye-sockets, eats lower jaw, widens occipital hole and pulls out brains. Snow leopard leaves large pieces of skin around the skeleton of the victim, whereas wolf tears it to shreds or eats up fully. Sometimes parts of the victim left by snow leopard are eaten by wolf. It is easy to mix the remains of snow leopard's or griffon vulture's food. The remains differ in skin being turned inside out rather than torn to large pieces.
|
Filonov K.F. (1996). Large terrestrial mammals in the reserves of Russia: their status and prospects of conservation.
Abstract: The authors make an analysis of fauna of large mammals in 68 nature reserves. There are 10 carnivores and 17 ungulates. Wolf, brown bear, wolverine and lynx appeared to be more widely spread. Dhole, snow leopard, tiger, Himalayan bear have limited distribution and low density. Hey have recorded in a few nature reserves. Among the ungulates wild boar, musk deer, red deer, roe deer, moose, reindeer and aurochs are more widely spread.
Keywords: Russia; nature reserves; large mammals; carnivores; ungulates; distribution; number; snow leopard.; 6680; Russian
|
Formozov A.N. (1990). Seasonal migrations of mammals due to snow cover. Distribution of the Felidae family species.
Abstract: It describes vertical migrations of ungulates (ibex, wild sheep) in the Semerechie, Altai, Sayans, Tuva, seasonal migrations of steppe ungulates (kulan and saiga), and migrations of predators (lynx, leopard, irbis, tiger, dhole, wolf, glutton) following ungulates during winters with thick snow cover. Shorter local migrations related to uneven snow cover are typical for corsac, fox, and wolf. An analysis of the Felidae family species distribution showed that northern border of the cat family species habitat is connected with borders of 20 30 cm thick snow cover rather than with landscape contours or typical habitats. With the exception of lynx, this can be referred to the large cat family species such as irbis, leopard, and tiger.
Keywords: Migration; ungulates; carnivores; snow leopard.; 6740; Russian
|
Fox, J. L., Nurbu, C., & Chundawat, R. S. (1991). The Mountain Ungulates of Ladakh India. Biological Conservation, 58, 167–190. |
Franchini, M., Atzeni, L., Lovari, S., Nasanbat, B., Ravchig, S., Herrador, F. C., Bombieri, G., Augugliaro, C. (2022). Spatio-temporal behaviour of predators and prey in an arid environment of Central Asia. Current Zoology, (zoac093).
Abstract: The mechanisms of interactions between apex and smaller carnivores may range from competition to facilitation. Conversely, interactions between predators and prey are mainly driven by the prey reducing the likelihood of encounters with predators. In this study, we investigated (i) the spatio-temporal interactions between an apex (the snow leopard) and a meso-predator (the red fox), and (ii) the temporal interactions between the snow leopard and its potential prey (Siberian ibex, argali, Asian wild ass, Tolai hare) through camera-trapping in the Mongolian Great Gobi-A. The probability of occurrence for the red fox was higher in presence of the snow leopard than in its absence. Moreover, the red fox activity pattern matched that of the snow leopard, with both species mostly active at sunset. This positive spatio-temporal interaction suggests that the presence of the snow leopard may be beneficial for the red fox in terms of scavenging opportunities. However, other explanations may also be possible. Amongst prey, the Siberian ibex and the argali were mainly active during the day, whereas the Asian wild ass and the Tolai hare were more nocturnal. These findings suggest that potential prey (especially the Siberian ibex and the argali) may shape their behaviour to decrease the opportunity of encounters with the snow leopard. Our results have revealed complex interactions between apex and smaller predators and between apex predator and its potential prey.
|
Harris, R. B. (1994). A note on snow leopards and local people in Nangqian County, Southern Qinghai Province. In J.L.Fox, & D. Jizeng (Eds.), (pp. 79–84). Usa: Islt.
Keywords: China; Qinghai; attitude; local-peoples; herders; livestock; predator; prey; cub; capture; poaching; blue-sheep; Release; grazing; yaks; goats; horses; domestic; ungulates; hunting; bones; fur; pelts; coats; conservation; trapping; protected-area; blue; sheep; browse; local; protected; area; peoples; 3250
|
Harris, R. B. (1994). Dealing with uncertainty in counts of mountain ungulates. In J.L.Fox, & D. Jizeng (Eds.), (pp. 105–111). Usa: Islt. |
Heiz A.V. (1983). Snow leopard in Kyrgyzstan and its protection (Vol. 3).
Abstract: In the year 1970, the quantity of snow leopards in Kyrgyzstan was defined as 1,300 animals, while in the years to follow 1,600 animals were recorded. A snow leopard population has significantly decreased since recently because of intense extermination of snow leopard's prey ungulates, particularly ibex. In some areas of the Kyrgyz ridge livestock is growing in number thus affecting snow leopard population. It is extremely rare that snow leopard would attack livestock. Snow leopards can be caught under special license. Educational and awareness work among shepherds and hunters residing in the mountainous area of the country needs to be improved.
Keywords: Kyrgyzstan; snow leopard; number; decline; mountain ungulates; livestock; hunting; propaganda; protection.; 6870; Russian
|
Ismagilov M.I. (1983). Protection of rare mammals in Kazakhstan.
Abstract: The following rare mammals can be found in nature reserves of Kazakhstan: argali, goitered gazelle, kulan, snow leopard, stone marten, Tien Shan brown bear, manul, Turkistan lynx, Menzbier's marmot, and porcupine. The rest of rare mammal species (three insectivorous species, seven rodent, eight predator, and two ungulate species) are outside of protected areas and require special protection measures.
Keywords: Kazakhstan; nature reserves; mammals; rare species; ungulates; carnivores; rodents; insectivores; bats; snow leopard.; 6990; Russian
|
Jiang, Z. (2005). Snow leopards in the Dulan International Hunting Ground, Qinghai, China.
Abstract: From March to May, 2006œªwe conducted extensive snow leopard surveys in the Burhanbuda Mountain Kunlun Mountains, Qinghai Province, China. 32 linear transect of 5~15 km each, which running through each vegetation type, were surveyed within the study area. A total of 72 traces of snow leopard were found along 4 transects (12.5% of total transects). The traces included pug marks or footprints, scrapes and urine marks. We estimated the average density of wild ungulates in the region was 2.88ñ0.35 individuals km-2(n=29). We emplaced 16 auto2 trigger cameras in different environments and eight photos of snow leopard were shot by four cameras and the capture rate of snow leopard was 71.4%. The minimum snow leopard population size in the Burhanbuda Mountain was two, because two snow leopards were phototrapped by different cameras at almost same time. Simultaneously, the cameras also shot 63 photos of other wild animals, including five photos are unidentified wild animals, and 20 photos of livestock. We evaluated the human attitudes towards snow leopard by interviewing with 27 Tibetan householders of 30 householders live in the study area. We propose to establish a nature reserve for protecting and managing snow leopards in the region. Snow leopard (Uncia uncia) is considered as a unique species because it lives above the snow line, it is endemic to alpines in Central Asia, inhabiting in 12 countries across Central Asia (Fox, 1992). Snow leopard ranges in alpine areas in Qinghai, Xinjiang, Inner Mongolia, Tibet, Gansu and Sichuan in western China (Liao, 1985, 1986; Zhou, 1987; Ma et al., 2002; Jiang & Xu, 2006). The total population and habitat of snow leopards in China are estimated to be 2,000~2,500 individuals and 1,824,316 km2, only 5% of which is under the protection of nature reserves. The cat's current range is fragmented (Zou & Zheng, 2003). Due to strong human persecutions, populations of snow leopards decreased significantly since the end of the 20th century. Thus, the
snow leopards are under the protection of international and domestic laws. From March to May, 2006, we conducted two field surveys in Zhiyu Village, Dulan County in Burhanbuda Mountain, Kunlun Mountains, China to determine the population, distribution and survival status of snow leopards in the area. The aim of the study was to provide ecologic data for snow leopard conservation. Keywords: snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; International; hunting; Qinghai; China; project; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; surveys; survey; mountains; mountain; province; transect; study; area; transects; pug; pug marks; pug-marks; marks; scrapes; scrape; density; densities; wild; ungulates; ungulate; region; camera; environment; photo; capture; population; population size; population-size; Animals; Animal; 20; livestock; Human; attitudes; attitude; tibetan; 30; nature; reserve; uncia; Uncia uncia; Uncia-uncia; species; snow line; snow-line; endemic; alpine; central; Central Asia; asia; countries; country; fox; range; areas; Xinjiang; inner; Inner-Mongolia; Mongolia; Tibet; gansu; Sichuan; habitat; protection; nature reserves; reserves; cat; populations; domestic; laws; law; field; field surveys; field survey; field-surveys; field-survey; Kunlun; distribution; survival; status; Data; conservation
|
Johnsingh, A. J. T. (2006). A roadmap for conservation in Uttaranchal.
Abstract: The enchanting state of Uttaranchal, carved out of Uttar Pradesh on 9th November 2000, has a total area of ca. 53,485 km2 with a population density of 160 persons/ km2, much lower than the national average of 324/km2. This young state can take pride in the fact that 13.42% of its area is under protected areas. The state has varied landscapes: snow-capped and conifer forest covered mountains in the north, forest covered foothills with numerous perennial rivers and streams, locally known as the bhabar tract which includes the Himalayan foothills and the Shivalik range. As a result, the land is home to a variety of fascinating wildlife such as the golden mahseer (Tor putitora), king cobra (Ophiophagus hanna), Himalayan monal (Lophophorus impejanus), great hornbill (Buceros bicornis), Himalayan tahr (Hemitragus jemlahicus), bharal (Pseudois nayaur), Himalayan musk deer (Moschus chrysogaster), goral (Nemorhaedus goral), elephant (Elephas maximus), snow leopard (Panthera uncia), leopard (P. pardus), black bear (Ursus thibetanus), and tiger (P. tigris). All across their range, most of these species are endangered. The potential of this state, with about 800 kilometers of riverine habitat, can only be surpassed by Arunachal Pradesh in terms of golden mahseer conservation. The mountains, bedecked with the scarlet flowers of rhododendron (Rhododendron arboreum) in the summer months, can be a veritable home to many forms of pheasants, mountain ungulates and carnivores, provided poaching for trade is eliminated and hunting for the pot is brought under control. The bhabar forests of this state, ca. 7,500 km2, extending between Yamuna and Sharda rivers (Fig. 1.), can easily support a population of about 1000 elephants and 200 tigers as long as this large habitat, now fragmented in three blocks, is managed and protected as one continuous habitat for wildlife. Six villages, gujjar settlements and encroachments need to be moved away from the main wildlife habitat which goes along the bhabar tract. Although the conservation of these habitats can eventually bring in immense benefits through well-planned ecotourism programmes that are rapidly catching up in the state, initial conservation efforts would need a substantial amount of funds.
|
Khanyari, M., Suryawanshi, K. R., Milner-Gulland, E. J., Dickinson, E., Khara, A., Rana, R. S., Vineer, H. R., Morgan, E. R. (2021). Predicting Parasite Dynamics in Mixed-Use Trans-Himalayan Pastures to Underpin Management of Cross-Transmission Between Livestock and Bharal. Frontiers in Veterinary Science, 8(714241), 1–21.
Abstract: The complexities of multi-use landscapes require sophisticated approaches to addressing disease transmission risks. We explored gastro-intestinal nematode (GINs) infections in the North India Trans-Himalayas through a socio-ecological lens, integrating parasite transmission modelling with field surveys and local knowledge, and evaluated the likely effectiveness of potential interventions. Bharal (blue sheep; Pseudois nayaur), a native wild herbivore, and livestock share pasture year-round and livestock commonly show signs of GINs infection. While both wild and domestic ungulates had GINs infections, egg counts indicated significantly higher parasite burdens in bharal than livestock. However, due to higher livestock densities, they contributed more to the total count of eggs and infective larvae on pasture. Herders also reported health issues in their sheep and goats consistent with parasite infections. Model simulations suggested that pasture infectivity in this system is governed by historical pasture use and gradually accumulated larval development during the summer, with no distinct short-term flashpoints for transmission. The most effective intervention was consequently predicted to be early-season parasite suppression in livestock using temperature in spring as a cue. A 1-month pause in egg output from livestock could lead to a reduction in total annual availability of infective larvae on pasture of 76%, potentially benefitting the health of both livestock and bharal. Modelling suggested that climate change over the past 33 years has led to no overall change in GINs transmission potential, but an increase in the relative influence of temperature over precipitation in driving pasture infectivity. Our study provides a transferable multi-pronged approach to investigating disease transmission, in order to support herders’ livelihoods and conserve wild ungulates.
|
Khanyari, M., Zhumabai uulu, K., Luecke, S., Mishra, C.,
Suryawanshi, K. (2020). Understanding population baselines: status of mountain ungulate
populations in the Central Tien Shan Mountains, Kyrgyzstan. Mammalia, , 1–8.
Abstract: We assessed the density of argali (Ovis ammon) and ibex
(Capra sibirica) in Sarychat-Ertash Nature Reserve and its neighbouring Koiluu valley. Sarychat is a protected area, while Koiluu is a human-use landscape which is a partly licenced hunting concession for mountain ungulates and has several livestock herders and their permanent residential structures. Population monitoring of mountain ungulates can help in setting measurable conservation targets such as appropriate trophy hunting quotas and to assess habitat suitability for predators like snow leopards (Panthera uncia). We employed the double-observer method to survey 573 km2 of mountain ungulate habitat inside Sarychat and 407 km2 inside Koiluu. The estimated densities of ibex and argali in Sarychat were 2.26 (95% CI 1.47–3.52) individuals km-2 and 1.54 (95% CI 1.01–2.20) individuals km-2, respectively. Total ungulate density in Sarychat was 3.80 (95% CI 2.47–5.72) individuals km-2. We did not record argali in Koiluu, whereas the density of ibex was 0.75 (95% CI 0.50–1.27) individuals km-2. While strictly protected areas can achieve high densities of mountain ungulates, multi-use areas can harbour meaningful though suppressed populations. Conservation of mountain ungulates and their predators can be enhanced by maintaining Sarychat-like “pristine” areas interspersed within a matrix of multi-use areas like Koiluu. |
Kovshar A.F. (1982). Preservation of gene pool of rare and endangered animal species.
Abstract: The rare species are protected in six nature reserves in Kazakhstan, including 9 mammals, 29 birds, and one reptile species. More than 20 rare and endangered species inhabiting Kazakhstan cannot be met within the nature reserves. The point is to establish a network of state nature reserves, particularly in steppe and desert area of the country.
Keywords: Kazakhstan; gene pool; rare species; mammals; ungulates; carnivores; snow leopard; rodents; birds; reptiles; amphibians; fishes.; 7360; Russian
|
Miller, D. J., & Jackson, R. (1994). Livestock and Snow Leopards:making room for competing users on the Tibetian Plateau. In J.L.Fox, & D.Jizeng (Eds.), (pp. 315–328). Usa: Islt.
Keywords: livestock; Tibet; herder; herders; predator; prey; protected-areas; parks; reserves; refuge; Tibetian-Plateau; ungulates; wild-yak; blue-sheep; pika; marmots; gazelle; antelope; Qomolangma; Namcha-Barwa; Chang-Tang; habitat; grazing; wolves; pens; enclosures; bounties; bounty; pelts; skins; coats; furs; poisoning; medicine; bones; land-use; conservation; ecology; blue; sheep; browse; tibetian; plateau; wild; yak; namcha; barwa; change; tang; land use; land; 2800
|
Mishra, C., Madhusudan, M. D., & Datta, A. (2006). Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs (Vol. 40).
Abstract: The high altitudes of Arunachal Pradesh,India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12 carnivores, 10 ungulates and 5 primates) were recorded, of which 13 are categorized as Endangered or Vulnerable on the IUCN Red List. One species of primate, the Arunachal macaque Macaca munzala, is new to science and the Chinese goral Nemorhaedus caudatus is a new addition to the ungulate fauna of the Indian subcontinent. We documented peoples' dependence on natural resources for grazing and extraction of timber and medicinal plants. The region's mammals are threatened by widespread hunting. The snow leopard Uncia uncia and dhole Cuon alpinus are also persecuted in retaliation for livestock depredation. The tiger Panthera tigris, earlier reported from the lower valleys, is now apparently extinct there, and range reductions over the last two decades are reported for bharal Pseudois nayaur and musk deer Moschus sp.. Based on mammal species richness, extent of high altitude habitat, and levels of anthropogenic disturbance, we identified a potential site for the creation of Arunachal's first high altitude wildlife reserve (815 km2). Community-based efforts that provide incentives for conservation-friendly practices could work in this area, and conservation awareness programmes are required, not just amongst the local communities and schools but for politicians, bureaucrats and the army.
Keywords: anthropogenic; area; Arunachal; assessment; awareness; bharal; biodiversity; carnivore; carnivores; community; community-based; conservation; deer; depredation; dhole; endangered; extinct; fauna; goral; grazing; habitat; habitats; High; Himalaya; hunting; incentives; India; indian; Iucn; leopard; livestock; livestock-depredation; livestock depredation; local; mammals; musk; musk-deer; nayaur; panthera; people; peoples; plant; plants; potential; Pseudois; Pseudois-nayaur; pseudois nayaur; range; recent; region; Report; reserve; resource; schools; snow; snow-leopard; snow leopard; species; survey; surveys; threat; threatened; threats; tiger; uncia; Uncia-uncia; Uncia uncia; ungulate; ungulates; valley; wildlife; work; Panthera-tigris; tigris
|
Moheb, Z., Rajabi, A. M., Jahed, N., Ostrowski, S., Zahler, P. I., Fuller, T. K. (2022). Using double-observer surveys to monitor urial and ibex populations in the Hindu Kush of Wakhan National Park, Afghanistan. Oryx, , 1–7.
Abstract: We surveyed the urial Ovis vignei and Siberian ibex Capra sibirica in the Hindu Kush mountain range of Wakhan National Park in north-eastern Afghanistan to determine their population status and identify potential drivers of population change. We conducted two double- observer ground surveys, in April–May 2015 and 2018, in 10 areas (total = 288 km2). Urial herds were mostly com- posed of both sexes (78% of observed herds), the mean adult sex ratio (females:males) was 100:70, and the mean female:juvenile ratio was 100:53. In 2018 we calculated a urial density of 35/100 km2, compared to 72/100 km2 in 2015. Ibex herds were mostly (79%) composed of both sexes, the mean adult sex ratio (females:males) was 100:103, and the mean female:juvenile ratio was 100:58. Ibex density estimates were similar in 2015 and 2018 (c. 250/100 km2). We discuss the usefulness of the double-observer methods for ungulate surveys, highlight the value of viewshed calculations and discuss the possible causes of urial population decline. To ensure the conservation of these ungulate populations, we recommend continued regular monitoring, measures to address poaching and research to clarify the taxonomical status of urials in Wakhan.
|
Saltz, D., Rowen, M., & Rubenstein, D. (2000). The effect of space-use patterns of reintroduced Asiatic wild ass on effective population size. Conservation Biology, 14(6), 1852–1861. |
Sarkar, P., Takpa, J., Ahmed, R., Tiwari, S. K., Pendharkar, A., ul-Haq, S., Miandad, J., Upadhyay, A., Kaul, R. (2008). Mountain Migrants. Survey of Tibetan Antelope (Pantholops hodgsonii) and Wild Yak (Bos grunniens) in Ladakh, Jammu & Kashmir, India. India.
Abstract: The Tibetan antelope (Pantholops hodgsonii), locally called chiru, is mainly confined to the Tibetan plateau in China. A small population migrates into Chang Thang in eastern Ladakh in the state of Jammu and Kashmir in India. The chiru has a geographical range extending approximately 1,600 km across the Tibetan Plateau, with an eastern limit near Ngoring Hu (Tibet Autonomous Region) and a western limit in Ladakh (India). Large-scale hunting for wool and meat has resulted in a decline of its population and only an estimated 75,000 individuals of this species survive in the world today. Its status in India has not been studied in any detail, although sporadic spot surveys have been done in the past. Similarly, very little information is available on status of wild yak (Bos grunniens), the progenitor (closest ancestor) of the domestic yak in India. The animal is distributed mainly in the highlands of the Tibetan plateau including the Qinghai province, Tibetan and Xinjiang autonomous regions and the Quilian mountains in the Gansu province. Small nomadic isolated populations are reported from Ladakh in Jammu and Kashmir (J&K), and even smaller numbers occasionally from Himachal Pradesh, Uttarakhand, Sikkim and Arunachal Pradesh in India. To obtain further information primarily about these two species, the Department of Wildlife Protection, Jammu & Kashmir (DWP) along with the Wildlife Trust of India (WTI) and the Indian Army initiated surveys in Ladakh in the years 2005 and 2006. Surveys were conducted in the Chang Thang and Karakoram Wildlife Sanctuaries of Ladakh in Jammu & Kashmir. The Chang Chenmo (Chang Thang) area lies in the eastern part of Ladakh just north of the famous Pangong Lake, while the Karakoram WLS lies in the north-eastern part of Ladakh, south of the Karakoram Pass. The team found 250 – 300 chiru in the Karakoram area in addition to other mammal species. Both male and female chiru were sighted here between altitudes of 4735 m and 5336 m. A total of 230 individuals were sighted (after deleting double counts) in the year 2005 and 45 individuals in 2006. Based on this, it is estimated that between 250-300 individuals occur in this area. Mean group size of chiru was 4.66±0.435 and varied between one to 34 individuals during 2005, and 4.5 ± 2.77 (SE) during 2006. Apart from chiru, other species encountered from the area includes Tibetan wolf (Canis lupus chanco), red fox (Vulpes vulpes), pale or mountain weasel (Mustela altaica), snow leopard (Uncia uncia), Ladakh urial (Ovis vignei), blue sheep (Pseudois nayaur), woolly hare (Lepus oiostolus), Ladakh pika (Ochotona ladacensis), Royle's pika (Ochotona roylei), Nubra pika (Ochotona nubrica), plateau pika (Ochotona curzoniae), Stoliczka's mountain vole (Alticola stoliczkanus) and silvery mountain vole (Alticola argentatus).
|
Schaller, G. B. (1998). Wildlife of the Tibetan Steppe. Chicago: University of Chicago Press. |