Home | << 1 2 >> |
Ale, S. B., Yonzon, P., & Thapa, K. (2007). Recovery of snow leopard Uncia uncia in Sagarmatha (Mount Everest) National Park, Nepal (Vol. 41).
Abstract: From September to November 2004 we conducted surveys of snow leopard Uncia uncia signs in three major valleys in Sagarmatha (Mount Everest) National Park in Nepal using the Snow Leopard Information Management System, a standardized survey technique for snow leopard research. We walked 24 transects covering c. 14 km and located 33 sites with 56 snow leopard signs, and 17 signs incidentally in other areas. Snow leopards appear to have re-inhabited the Park, following their disappearance c. 40 years ago, apparently following the recovery of Himalayan tahr Hemitragus jemlahicus and musk deer Moschus chrysogaster populations. Taken together the locations of all 73 recent snow leopard signs indicate that the species is using predominantly grazing land and shrubland/ open forest at elevations of 3,000-5,000 m, habitat types that are also used by domestic and wild ungulates. Sagarmatha is the homeland of c. 3,500 Buddhist Sherpas with .3,000 livestock. Along with tourism and associated developments in Sagarmatha, traditional land use practices could be used to ensure coexistence of livestock and wildlife, including the recovering snow leopards, and ensure the wellbeing of the Sherpas.
Keywords: Nepal; recovery; Sagarmatha Mount Everest National Park; snow leopard; Uncia uncia; surveys; survey; snow; snow-leopard; leopard; uncia; Uncia-uncia; valley; Sagarmatha; national; national park; National-park; park; using; information; management; system; research; transects; transect; sign; areas; area; snow leopards; snow-leopards; leopards; 40; Himalayan; tahr; musk; musk-deer; deer; location; recent; species; grazing; land; Forest; habitat; domestic; wild; ungulates; ungulate; livestock; tourism; development; traditional; land use; land-use; use; wildlife
|
Bhatnagar, Y. V., Stakrey, R. W., & Jackson, R. (2000). A Survey of Depredation and Related Wildlife-Human Conflicts in Hemis National Park, Ladakh (India) (Vol. xvi). Seattle: Islt. |
Braden, K. E. (1988). Economic Development in Six Regions of Snow Leopard Habitat in the U.S.S.R. In H.Freeman (Ed.), (pp. 227–246). India: International Snow Leopard Trust and the Wildlife Institute of India.
Abstract: The Disappearance of traditional ungulate prey of the snow leopard may be contributing to its endangered status in the wild. Soviet biologists have noted that wild sheep are a primary prey of the snow leopard in the southern Russian union republic and the Central Asian union republic of the U.S.S.R. While poaching appears to have had some impact on the status of these sheep, econmic pressures may be contributing to their decrease. Evidence presented for KAzakhstan and three regions of the Russian republic demonstrates that commercial sheep and goat production appears to be growing at a very high pace in these areas, thus consumming habitat otherwise available for wild herds.
|
Chundawat, R. S., & Rawat G.S. (1990). Food Habits of Snow Leopard in Ladakh, India.
Abstract: The snow leopard has remained little studied in the past, and most of the information available is either in the form of natural history or anecdotal notes. The inaccessibility of the terrain and its secretive habits make this one of the more difficult animals to study in the wild. In the past decade, several ecological surveys were conducted in India, Nepal, China and Mongolia, which gave us information on the status and distribution of snow leopard (Jackson, Mallon, Fox, Schaller, Chundawat) A detailed study in Nepal through light on its secretive habits ( Jackson and Ahlborn, 1989). Even then little is known about its feeding habits. The present paper discusses this aspect from a study which was part of a detailed study conducted on the ecology of snow leopard in India from October 1987 to Feburary 1990.
|
Dementiev G.P. (1967). Quadrupeds inhabitants of the mountains.
Abstract: All species inhabiting the highlands of Asia are normally referred to as herbivorous or predators. A majority of alpine land species (rodents and ungulates) feeds upon leaves, stalks, and roots of plants. Among widely distributed highland species the most interesting are marmots, red pica, grey vole, argali, and ibex. Argali and ibex are preyed on by snow leopards. There are reasons to believe that these mountain animal species are more ancient than their cognates in a plain. All the way from Central Asia to Europe, species belonging to the eastern and western fauna complexes are observed to interpenetrate.
Keywords: asia; mountain fauna; endemics; species range; rodents; ungulates; carnivores; marmots; pikas; voles; ibex; mountain sheep; snow leopard.; 6480; Russian
|
Egorov O.V. (1955). Enemies, infections, parasites and mortality rate of ibex (Vol. Vol. 42.).
Abstract: Reasons for ibex and argali mortality from natural enemies, parasites, infections, accidents, and hunters are analyzed. Snow leopard is one of the most dangerous enemies of ibex and argali, preying equally on both young and mature animals (mostly males). Snow leopard feeds upon ibex all year round. Unlike wolf, snow leopard would never kill several animals at a time, but only one selected victim. The food remains left by these predators are different in terms of the skull gnawing. Nasal bones and eye-sockets on the skull of ibex killed by snow leopard remain undamaged, while wolf gnaws off nasal part of the skull, breaks eye-sockets, eats lower jaw, widens occipital hole and pulls out brains. Snow leopard leaves large pieces of skin around the skeleton of the victim, whereas wolf tears it to shreds or eats up fully. Sometimes parts of the victim left by snow leopard are eaten by wolf. It is easy to mix the remains of snow leopard's or griffon vulture's food. The remains differ in skin being turned inside out rather than torn to large pieces.
|
Filonov K.F. (1996). Large terrestrial mammals in the reserves of Russia: their status and prospects of conservation.
Abstract: The authors make an analysis of fauna of large mammals in 68 nature reserves. There are 10 carnivores and 17 ungulates. Wolf, brown bear, wolverine and lynx appeared to be more widely spread. Dhole, snow leopard, tiger, Himalayan bear have limited distribution and low density. Hey have recorded in a few nature reserves. Among the ungulates wild boar, musk deer, red deer, roe deer, moose, reindeer and aurochs are more widely spread.
Keywords: Russia; nature reserves; large mammals; carnivores; ungulates; distribution; number; snow leopard.; 6680; Russian
|
Formozov A.N. (1990). Seasonal migrations of mammals due to snow cover. Distribution of the Felidae family species.
Abstract: It describes vertical migrations of ungulates (ibex, wild sheep) in the Semerechie, Altai, Sayans, Tuva, seasonal migrations of steppe ungulates (kulan and saiga), and migrations of predators (lynx, leopard, irbis, tiger, dhole, wolf, glutton) following ungulates during winters with thick snow cover. Shorter local migrations related to uneven snow cover are typical for corsac, fox, and wolf. An analysis of the Felidae family species distribution showed that northern border of the cat family species habitat is connected with borders of 20 30 cm thick snow cover rather than with landscape contours or typical habitats. With the exception of lynx, this can be referred to the large cat family species such as irbis, leopard, and tiger.
Keywords: Migration; ungulates; carnivores; snow leopard.; 6740; Russian
|
Fox, J. L., Nurbu, C., & Chundawat, R. S. (1991). The Mountain Ungulates of Ladakh India. Biological Conservation, 58, 167–190. |
Franchini, M., Atzeni, L., Lovari, S., Nasanbat, B., Ravchig, S., Herrador, F. C., Bombieri, G., Augugliaro, C. (2022). Spatio-temporal behaviour of predators and prey in an arid environment of Central Asia. Current Zoology, (zoac093).
Abstract: The mechanisms of interactions between apex and smaller carnivores may range from competition to facilitation. Conversely, interactions between predators and prey are mainly driven by the prey reducing the likelihood of encounters with predators. In this study, we investigated (i) the spatio-temporal interactions between an apex (the snow leopard) and a meso-predator (the red fox), and (ii) the temporal interactions between the snow leopard and its potential prey (Siberian ibex, argali, Asian wild ass, Tolai hare) through camera-trapping in the Mongolian Great Gobi-A. The probability of occurrence for the red fox was higher in presence of the snow leopard than in its absence. Moreover, the red fox activity pattern matched that of the snow leopard, with both species mostly active at sunset. This positive spatio-temporal interaction suggests that the presence of the snow leopard may be beneficial for the red fox in terms of scavenging opportunities. However, other explanations may also be possible. Amongst prey, the Siberian ibex and the argali were mainly active during the day, whereas the Asian wild ass and the Tolai hare were more nocturnal. These findings suggest that potential prey (especially the Siberian ibex and the argali) may shape their behaviour to decrease the opportunity of encounters with the snow leopard. Our results have revealed complex interactions between apex and smaller predators and between apex predator and its potential prey.
|
Ghoshal, A., Bhatnagar, Y. V., Pandav, B., Sharma, K., Mshra, C. (2017). Assessing changes in distribution of the Endangered snow leopard Panthera uncia and its wild prey over 2 decades in the Indian Himalaya through interviewbased occupancy surveys. Oryx, , 1–13.
Abstract: Understanding species distributions, patterns of
change and threats can form the basis for assessing the conservation status of elusive species that are difficult to survey. The snow leopard Panthera uncia is the top predator of the Central and South Asian mountains. Knowledge of the distribution and status of this elusive felid and its wild prey is limited. Using recall-based key-informant interviews we estimated site use by snow leopards and their primary wild prey, blue sheep Pseudois nayaur and Asiatic ibex Capra sibirica, across two time periods (past: �; recent: �) in the state of Himachal Pradesh, India. We also conducted a threat assessment for the recent period. Probability of site use was similar across the two time periods for snow leopards, blue sheep and ibex, whereas for wild prey (blue sheep and ibex combined) overall there was an % contraction. Although our surveys were conducted in areas within the presumed distribution range of the snow leopard, we found snow leopards were using only % of the area (, km). Blue sheep and ibex had distinct distribution ranges. Snow leopards and their wild prey were not restricted to protected areas, which encompassed only % of their distribution within the study area. Migratory livestock grazing was pervasive across ibex distribution range and was the most widespread and serious conservation threat. Depredation by free-ranging dogs, and illegal hunting and wildlife trade were the other severe threats. Our results underscore the importance of community-based, landscape- scale conservation approaches and caution against reliance on geophysical and opinion-based distribution maps that have been used to estimate national and global snow leopard ranges. |
Harris, R. B. (1994). A note on snow leopards and local people in Nangqian County, Southern Qinghai Province. In J.L.Fox, & D. Jizeng (Eds.), (pp. 79–84). Usa: Islt.
Keywords: China; Qinghai; attitude; local-peoples; herders; livestock; predator; prey; cub; capture; poaching; blue-sheep; Release; grazing; yaks; goats; horses; domestic; ungulates; hunting; bones; fur; pelts; coats; conservation; trapping; protected-area; blue; sheep; browse; local; protected; area; peoples; 3250
|
Harris, R. B. (1994). Dealing with uncertainty in counts of mountain ungulates. In J.L.Fox, & D. Jizeng (Eds.), (pp. 105–111). Usa: Islt. |
Heiz A.V. (1983). Snow leopard in Kyrgyzstan and its protection (Vol. 3).
Abstract: In the year 1970, the quantity of snow leopards in Kyrgyzstan was defined as 1,300 animals, while in the years to follow 1,600 animals were recorded. A snow leopard population has significantly decreased since recently because of intense extermination of snow leopard's prey ungulates, particularly ibex. In some areas of the Kyrgyz ridge livestock is growing in number thus affecting snow leopard population. It is extremely rare that snow leopard would attack livestock. Snow leopards can be caught under special license. Educational and awareness work among shepherds and hunters residing in the mountainous area of the country needs to be improved.
Keywords: Kyrgyzstan; snow leopard; number; decline; mountain ungulates; livestock; hunting; propaganda; protection.; 6870; Russian
|
Ismagilov M.I. (1983). Protection of rare mammals in Kazakhstan.
Abstract: The following rare mammals can be found in nature reserves of Kazakhstan: argali, goitered gazelle, kulan, snow leopard, stone marten, Tien Shan brown bear, manul, Turkistan lynx, Menzbier's marmot, and porcupine. The rest of rare mammal species (three insectivorous species, seven rodent, eight predator, and two ungulate species) are outside of protected areas and require special protection measures.
Keywords: Kazakhstan; nature reserves; mammals; rare species; ungulates; carnivores; rodents; insectivores; bats; snow leopard.; 6990; Russian
|
Jiang, Z. (2005). Snow leopards in the Dulan International Hunting Ground, Qinghai, China.
Abstract: From March to May, 2006œªwe conducted extensive snow leopard surveys in the Burhanbuda Mountain Kunlun Mountains, Qinghai Province, China. 32 linear transect of 5~15 km each, which running through each vegetation type, were surveyed within the study area. A total of 72 traces of snow leopard were found along 4 transects (12.5% of total transects). The traces included pug marks or footprints, scrapes and urine marks. We estimated the average density of wild ungulates in the region was 2.88ñ0.35 individuals km-2(n=29). We emplaced 16 auto2 trigger cameras in different environments and eight photos of snow leopard were shot by four cameras and the capture rate of snow leopard was 71.4%. The minimum snow leopard population size in the Burhanbuda Mountain was two, because two snow leopards were phototrapped by different cameras at almost same time. Simultaneously, the cameras also shot 63 photos of other wild animals, including five photos are unidentified wild animals, and 20 photos of livestock. We evaluated the human attitudes towards snow leopard by interviewing with 27 Tibetan householders of 30 householders live in the study area. We propose to establish a nature reserve for protecting and managing snow leopards in the region. Snow leopard (Uncia uncia) is considered as a unique species because it lives above the snow line, it is endemic to alpines in Central Asia, inhabiting in 12 countries across Central Asia (Fox, 1992). Snow leopard ranges in alpine areas in Qinghai, Xinjiang, Inner Mongolia, Tibet, Gansu and Sichuan in western China (Liao, 1985, 1986; Zhou, 1987; Ma et al., 2002; Jiang & Xu, 2006). The total population and habitat of snow leopards in China are estimated to be 2,000~2,500 individuals and 1,824,316 km2, only 5% of which is under the protection of nature reserves. The cat's current range is fragmented (Zou & Zheng, 2003). Due to strong human persecutions, populations of snow leopards decreased significantly since the end of the 20th century. Thus, the
snow leopards are under the protection of international and domestic laws. From March to May, 2006, we conducted two field surveys in Zhiyu Village, Dulan County in Burhanbuda Mountain, Kunlun Mountains, China to determine the population, distribution and survival status of snow leopards in the area. The aim of the study was to provide ecologic data for snow leopard conservation. Keywords: snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; International; hunting; Qinghai; China; project; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; surveys; survey; mountains; mountain; province; transect; study; area; transects; pug; pug marks; pug-marks; marks; scrapes; scrape; density; densities; wild; ungulates; ungulate; region; camera; environment; photo; capture; population; population size; population-size; Animals; Animal; 20; livestock; Human; attitudes; attitude; tibetan; 30; nature; reserve; uncia; Uncia uncia; Uncia-uncia; species; snow line; snow-line; endemic; alpine; central; Central Asia; asia; countries; country; fox; range; areas; Xinjiang; inner; Inner-Mongolia; Mongolia; Tibet; gansu; Sichuan; habitat; protection; nature reserves; reserves; cat; populations; domestic; laws; law; field; field surveys; field survey; field-surveys; field-survey; Kunlun; distribution; survival; status; Data; conservation
|
Johnsingh, A. J. T. (2006). A roadmap for conservation in Uttaranchal.
Abstract: The enchanting state of Uttaranchal, carved out of Uttar Pradesh on 9th November 2000, has a total area of ca. 53,485 km2 with a population density of 160 persons/ km2, much lower than the national average of 324/km2. This young state can take pride in the fact that 13.42% of its area is under protected areas. The state has varied landscapes: snow-capped and conifer forest covered mountains in the north, forest covered foothills with numerous perennial rivers and streams, locally known as the bhabar tract which includes the Himalayan foothills and the Shivalik range. As a result, the land is home to a variety of fascinating wildlife such as the golden mahseer (Tor putitora), king cobra (Ophiophagus hanna), Himalayan monal (Lophophorus impejanus), great hornbill (Buceros bicornis), Himalayan tahr (Hemitragus jemlahicus), bharal (Pseudois nayaur), Himalayan musk deer (Moschus chrysogaster), goral (Nemorhaedus goral), elephant (Elephas maximus), snow leopard (Panthera uncia), leopard (P. pardus), black bear (Ursus thibetanus), and tiger (P. tigris). All across their range, most of these species are endangered. The potential of this state, with about 800 kilometers of riverine habitat, can only be surpassed by Arunachal Pradesh in terms of golden mahseer conservation. The mountains, bedecked with the scarlet flowers of rhododendron (Rhododendron arboreum) in the summer months, can be a veritable home to many forms of pheasants, mountain ungulates and carnivores, provided poaching for trade is eliminated and hunting for the pot is brought under control. The bhabar forests of this state, ca. 7,500 km2, extending between Yamuna and Sharda rivers (Fig. 1.), can easily support a population of about 1000 elephants and 200 tigers as long as this large habitat, now fragmented in three blocks, is managed and protected as one continuous habitat for wildlife. Six villages, gujjar settlements and encroachments need to be moved away from the main wildlife habitat which goes along the bhabar tract. Although the conservation of these habitats can eventually bring in immense benefits through well-planned ecotourism programmes that are rapidly catching up in the state, initial conservation efforts would need a substantial amount of funds.
|
Khanyari, M., Oyanedel, R., Khara, A., Sharma, M., Milner-Gulland, E. J., Suryawanshi, K. R., Vineer, H. R., Morgan, E. R. (2024). Predicting and reducing potential parasite infection between migratory livestock and resident Asiatic ibex of Pin valley, India. Journal of Biosciences, 49(50), 1–14.
Abstract: Disease cross-transmission between wild and domestic ungulates can negatively impact livelihoods and wildlife conservation. In Pin valley, migratory sheep and goats share pastures seasonally with the resident Asiatic ibex (Capra sibirica), leading to potential disease cross-transmission. Focussing on gastro-intestinal nematodes (GINs) as determinants of health in ungulates, we hypothesized that infection on pastures would increase over summer from contamination by migrating livestock. Consequently, interventions in livestock that are well-timed should reduce infection pressure for ibex. Using a parasite life-cycle model, that predicts infective larval availability, we investigated GIN transmission dynamics and evaluated potential interventions. Migratory livestock were predicted to contribute most infective larvae onto shared pastures due to higher density and parasite levels, driving infections in both livestock and ibex. The model predicted a c.30-day anti- parasitic intervention towards the end of the livestock’s time in Pin would be most effective at reducing GINs in both hosts. Albeit with the caveats of not being able to provide evidence of interspecific parasite trans- mission due to the inability to identify parasite species, this case demonstrates the usefulness of our predictive model for investigating parasite transmission in landscapes where domestic and wild ungulates share pastures. Additionally, it suggests management options for further investigation.
Keywords: Disease; epidemiology; gastrointestinal nematode; intervention; parasite; ungulate
|
Khanyari, M., Suryawanshi, K. R., Milner-Gulland, E. J., Dickinson, E., Khara, A., Rana, R. S., Vineer, H. R., Morgan, E. R. (2021). Predicting Parasite Dynamics in Mixed-Use Trans-Himalayan Pastures to Underpin Management of Cross-Transmission Between Livestock and Bharal. Frontiers in Veterinary Science, 8(714241), 1–21.
Abstract: The complexities of multi-use landscapes require sophisticated approaches to addressing disease transmission risks. We explored gastro-intestinal nematode (GINs) infections in the North India Trans-Himalayas through a socio-ecological lens, integrating parasite transmission modelling with field surveys and local knowledge, and evaluated the likely effectiveness of potential interventions. Bharal (blue sheep; Pseudois nayaur), a native wild herbivore, and livestock share pasture year-round and livestock commonly show signs of GINs infection. While both wild and domestic ungulates had GINs infections, egg counts indicated significantly higher parasite burdens in bharal than livestock. However, due to higher livestock densities, they contributed more to the total count of eggs and infective larvae on pasture. Herders also reported health issues in their sheep and goats consistent with parasite infections. Model simulations suggested that pasture infectivity in this system is governed by historical pasture use and gradually accumulated larval development during the summer, with no distinct short-term flashpoints for transmission. The most effective intervention was consequently predicted to be early-season parasite suppression in livestock using temperature in spring as a cue. A 1-month pause in egg output from livestock could lead to a reduction in total annual availability of infective larvae on pasture of 76%, potentially benefitting the health of both livestock and bharal. Modelling suggested that climate change over the past 33 years has led to no overall change in GINs transmission potential, but an increase in the relative influence of temperature over precipitation in driving pasture infectivity. Our study provides a transferable multi-pronged approach to investigating disease transmission, in order to support herders’ livelihoods and conserve wild ungulates.
|
Khanyari, M., Zhumabai uulu, K., Luecke, S., Mishra, C.,
Suryawanshi, K. (2020). Understanding population baselines: status of mountain ungulate
populations in the Central Tien Shan Mountains, Kyrgyzstan. Mammalia, , 1–8.
Abstract: We assessed the density of argali (Ovis ammon) and ibex
(Capra sibirica) in Sarychat-Ertash Nature Reserve and its neighbouring Koiluu valley. Sarychat is a protected area, while Koiluu is a human-use landscape which is a partly licenced hunting concession for mountain ungulates and has several livestock herders and their permanent residential structures. Population monitoring of mountain ungulates can help in setting measurable conservation targets such as appropriate trophy hunting quotas and to assess habitat suitability for predators like snow leopards (Panthera uncia). We employed the double-observer method to survey 573 km2 of mountain ungulate habitat inside Sarychat and 407 km2 inside Koiluu. The estimated densities of ibex and argali in Sarychat were 2.26 (95% CI 1.47–3.52) individuals km-2 and 1.54 (95% CI 1.01–2.20) individuals km-2, respectively. Total ungulate density in Sarychat was 3.80 (95% CI 2.47–5.72) individuals km-2. We did not record argali in Koiluu, whereas the density of ibex was 0.75 (95% CI 0.50–1.27) individuals km-2. While strictly protected areas can achieve high densities of mountain ungulates, multi-use areas can harbour meaningful though suppressed populations. Conservation of mountain ungulates and their predators can be enhanced by maintaining Sarychat-like “pristine” areas interspersed within a matrix of multi-use areas like Koiluu. |
Kohli, K., Sankaran, M., Suryawanshi, K. R., Mishra, C. (2014). A penny saved is a penny earned: lean season foraging strategy of an alpine ungulate. Animal Behaviour, (92), 93–100.
Abstract: Lean season foraging strategies are critical for the survival of species inhabiting highly seasonal environments
such as alpine regions. However, inferring foraging strategies is often difficult because of challenges associated with empirically estimating energetic costs and gains of foraging in the field. We generated qualitative predictions for the relationship between daily winter foraging time, body size and forage availability for three contrasting foraging strategies including time minimization, energy intake maximization and net energy maximization. Our model predicts that for animals employing a time minimization strategy, daily winter foraging time should not change with body size and should increase with a reduction in forage availability. For energy intake maximization, foraging time should not vary with either body size or forage availability. In contrast, for a net energy maximization strategy, foraging time should decrease with increase in body size and with a reduction in forage availability. We contrasted proportion of daily time spent foraging by bharal, Pseudois nayaur, a dimorphic grazer, across different body size classes in two high-altitude sites differing in forage availability. Our results indicate that bharal behave as net energy maximizers during winter. As predicted by the net energy maximization strategy, daily winter foraging time of bharal declined with increasing body size, and was lower in the site with low forage availability. Furthermore, as predicted by our model, foraging time declined as the winter season progressed. We did not find support for the time minimizing or energy intake maximizing strategies. Our qualitative model uses relative rather than absolute costs and gains of foraging which are often difficult to estimate in the field. It thus offers a simple way to make informed inferences regarding animal foraging strategies by contrasting estimates of daily foraging time across gradients of body size and forage availability. |
Kovshar A.F. (1982). Preservation of gene pool of rare and endangered animal species.
Abstract: The rare species are protected in six nature reserves in Kazakhstan, including 9 mammals, 29 birds, and one reptile species. More than 20 rare and endangered species inhabiting Kazakhstan cannot be met within the nature reserves. The point is to establish a network of state nature reserves, particularly in steppe and desert area of the country.
Keywords: Kazakhstan; gene pool; rare species; mammals; ungulates; carnivores; snow leopard; rodents; birds; reptiles; amphibians; fishes.; 7360; Russian
|
Miller, D. J., & Jackson, R. (1994). Livestock and Snow Leopards:making room for competing users on the Tibetian Plateau. In J.L.Fox, & D.Jizeng (Eds.), (pp. 315–328). Usa: Islt.
Keywords: livestock; Tibet; herder; herders; predator; prey; protected-areas; parks; reserves; refuge; Tibetian-Plateau; ungulates; wild-yak; blue-sheep; pika; marmots; gazelle; antelope; Qomolangma; Namcha-Barwa; Chang-Tang; habitat; grazing; wolves; pens; enclosures; bounties; bounty; pelts; skins; coats; furs; poisoning; medicine; bones; land-use; conservation; ecology; blue; sheep; browse; tibetian; plateau; wild; yak; namcha; barwa; change; tang; land use; land; 2800
|
Mishra, C., Madhusudan, M. D., & Datta, A. (2006). Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs (Vol. 40).
Abstract: The high altitudes of Arunachal Pradesh,India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12 carnivores, 10 ungulates and 5 primates) were recorded, of which 13 are categorized as Endangered or Vulnerable on the IUCN Red List. One species of primate, the Arunachal macaque Macaca munzala, is new to science and the Chinese goral Nemorhaedus caudatus is a new addition to the ungulate fauna of the Indian subcontinent. We documented peoples' dependence on natural resources for grazing and extraction of timber and medicinal plants. The region's mammals are threatened by widespread hunting. The snow leopard Uncia uncia and dhole Cuon alpinus are also persecuted in retaliation for livestock depredation. The tiger Panthera tigris, earlier reported from the lower valleys, is now apparently extinct there, and range reductions over the last two decades are reported for bharal Pseudois nayaur and musk deer Moschus sp.. Based on mammal species richness, extent of high altitude habitat, and levels of anthropogenic disturbance, we identified a potential site for the creation of Arunachal's first high altitude wildlife reserve (815 km2). Community-based efforts that provide incentives for conservation-friendly practices could work in this area, and conservation awareness programmes are required, not just amongst the local communities and schools but for politicians, bureaucrats and the army.
Keywords: anthropogenic; area; Arunachal; assessment; awareness; bharal; biodiversity; carnivore; carnivores; community; community-based; conservation; deer; depredation; dhole; endangered; extinct; fauna; goral; grazing; habitat; habitats; High; Himalaya; hunting; incentives; India; indian; Iucn; leopard; livestock; livestock-depredation; livestock depredation; local; mammals; musk; musk-deer; nayaur; panthera; people; peoples; plant; plants; potential; Pseudois; Pseudois-nayaur; pseudois nayaur; range; recent; region; Report; reserve; resource; schools; snow; snow-leopard; snow leopard; species; survey; surveys; threat; threatened; threats; tiger; uncia; Uncia-uncia; Uncia uncia; ungulate; ungulates; valley; wildlife; work; Panthera-tigris; tigris
|
Mishra, C., Van Wieren S., Ketner, P., Heitkonig, I., & Prins H. (2004). Competition between domestic livestock and wild bharal Pseudois nayaur in the Indian Trans-Himalaya. Journal of Animal Ecology, 73, 344–354.
Abstract: 1. The issue of competition between livestock and wild herbivores has remained contentious. We studied the diets and population structures of the mountain ungulate bharal Pseudois nayaur and seven species of livestock to evaluate whether or not they compete for forage. The study was conducted in the high altitude Spiti Valley, Indian Trans-Himalaya.
2. We compared resource (forage) availability and bharal population structures between rangelands differing in livestock density. Forage availability was estimated by clipping the standing graminoid biomass in sample plots. Livestock and bharal population structures were quantified through annual censuses. Seasonal diets of livestock were studied by direct observations, while those of bharal were quantified through feeding signs on vegetation. 3. We found that livestock grazing causes a significant reduction in the standing crop of forage. Graminoid availability per unit livestock biomass was three times greater in a moderately grazed rangeland compared with an intensively grazed one. 4. There was considerable diet overlap among the herbivore species. In summer, bharal, yak Bos grunniens, horse Equus caballus, cow Bos indicus, and dzomo (yak-cow hybrids) fed predominantly on graminoids, while donkey E. asinus, sheep Ovis aries, and goat Capra hircus, consumed both graminoids and herbs. The summer diet of bharal was a subset of the diets of three livestock species. In winter, depleted graminoid availability caused bharal, yak and horse to consume relatively more herbs, while the remaining livestock species fed predominantly on graminoids. Diet overlap was less in winter but, in both seasons, all important forage species in the bharal diet were consumed in substantial amounts by one or more species of livestock. 5. Comparison of the population structures of bharal between two rangelands differing in livestock density by c. 30% yielded evidence of resource competition. In the intensively grazed rangeland, bharal density was 63% lower, and bharal population showed poorer performance (lower young : adult female ratios). 6.Synthesis and applications High diet overlap between livestock and bharal, together with density-dependent forage limitation, results in resource competition and a decline in bharal density. Under the present conditions of high livestock density and supplemental feeding, restricting livestock numbers and creating livestockfree areas are necessary measures for conserving Trans-Himalayan wild herbivores. Mediating competitive effects on bharal through supplemental feeding is not a feasible option. |