Ale, S. B., & Karky, B. S. (2002). Observations on Conservation of Snow Leopards in Nepal.. Islt: Islt.
Abstract: The wild populations of snow leopards are threatened in Nepal. For their effective conservation, this paper seeks to build a strategy based not only on protected enclaves but also on landscapes, using an integrated grass-roots approach that essentially reduces poverty and addresses the needs of human beings and that of wildlife. Also equally relevant in places with a strong hold by religious and cultural authorities in the decision-making processes is the recognition and possible integration of cultural and traditional belief systems in overall snow leopard conservation schemes.
|
Ale, S. B., Yonzon, P., & Thapa, K. (2007). Recovery of snow leopard Uncia uncia in Sagarmatha (Mount Everest) National Park, Nepal (Vol. 41).
Abstract: From September to November 2004 we conducted surveys of snow leopard Uncia uncia signs in three major valleys in Sagarmatha (Mount Everest) National Park in Nepal using the Snow Leopard Information Management System, a standardized survey technique for snow leopard research. We walked 24 transects covering c. 14 km and located 33 sites with 56 snow leopard signs, and 17 signs incidentally in other areas. Snow leopards appear to have re-inhabited the Park, following their disappearance c. 40 years ago, apparently following the recovery of Himalayan tahr Hemitragus jemlahicus and musk deer Moschus chrysogaster populations. Taken together the locations of all 73 recent snow leopard signs indicate that the species is using predominantly grazing land and shrubland/ open forest at elevations of 3,000-5,000 m, habitat types that are also used by domestic and wild ungulates. Sagarmatha is the homeland of c. 3,500 Buddhist Sherpas with .3,000 livestock. Along with tourism and associated developments in Sagarmatha, traditional land use practices could be used to ensure coexistence of livestock and wildlife, including the recovering snow leopards, and ensure the wellbeing of the Sherpas.
|
Ale, S. B., Boesi, R. (2005). Snow Leopard Sightings on the Top of the World. Cat News, (43), 19–20.
Abstract: Sightings of snow leopards Uncia uncia in the wild are rare. This is because snow leopards occur in low numbers and are very elusive (Schaller 1977). Snow leopards may be sparsely distributed,but they may not, however, be very elusive in the world's highest park, Sagarmatha (Mt. Everest) National Park (86° 30' 53“ E to 86° 99' 08” E and 27° 46' 19“ N to 27° 06' 45” N) in Nepal.
|
Alexander, J. S., Shi, K., Tallents, L. A., Riordan, P. (2015). On the high trail: examining determinants of site use by the Endangered snow leopard Panthera uncia in Qilianshan, China. Oryx, (Fauna & Flora International), 1–8.
Abstract: Abstract There is a need for simple and robust techniques for assessment and monitoring of populations of the Endangered snow leopard Panthera uncia to inform the de- velopment of action plans for snow leopard conservation. We explored the use of occupancy modelling to evaluate the influence of environmental and anthropogenic features on snow leopard site-use patterns. We conducted a camera trap survey across  km in Gansu Province, China, and used data from  camera traps to estimate probabilities of site use and detection using the single season occupancy model. We assessed the influence of three covariates on site use by snow leopards: elevation, the presence of blue sheep Pseudois nayaur and the presence of human disturb- ance (distance to roads). We recorded  captures of snow leopards over , trap-days, representing a mean capture success of . captures per  trap-days. Elevation had the strongest influence on site use, with the probability of site use increasing with altitude, whereas the influence of presence of prey and distance to roads was relatively weak. Our findings indicate the need for practical and robust tech- niques to appraise determinants of site use by snow leo- pards, especially in the context of the limited resources available for such work.
|
Alexander, J. S., Zhang, C., Shi, K., Riordan, P. (2016). A spotlight on snow leopard conservation in China. Integrative Zoology, (11).
Abstract: China holds the greatest proportion of the snow leopard’s (Panthera uncia) global range and is central to their conservation. The country is also undergoing unprecedented economic growth, which increases both the threats to the snow leopard and the opportunities for its conservation. In this paper we aim to review published literature (from 1950 to 2014) in English and Mandarin on snow leopard ecology and conservation in China in order to identify thematic and geographic research gaps and propose research priorities. We first retrieved all publish items that considered snow leopards in China (n = 106). We extracted from these papers 274 reports of snow leopard presence in China. We then reviewed a subset of papers (n = 33) of this literature, which specifically focused on snow leopard ecology and conservation within China. We introduced a thematic framework that allows a structured and comprehensive assessment of findings. This framework recognizes 4 critical and interrelated topics underpinning snow leopard ecology and conservation: habitat (distribution and protected area coverage); prey (distribution and abundance, predator–prey relationships); human interactions (hunting and trade, livestock interactions and conflicts); and the underlying policy context. Significant gains in knowledge as well as research gaps and priorities are discussed with reference to our framework. The modest quantity and limited scope of published research on the snow leopard in China calls for a continued and intensified effort to inform and support national conservation policies.
|
Ali, S. M. (1990). The Cats of India. Myforest, 26(3), 275–291.
Abstract: Describes the range, behaviour and ecology of lion Panthera leo, tiger P. tigris, leopard P. pardus, snow leopard P. uncia, clouded leopard Neofelis nebylosa and cheetah Acinonyx jubatus. -P.J.Jarvis
|
Allen, M. L., Rovero, F., Oberosler, V., Augugliaro, C., Krofel, M. (2023). Effects of snow leopards (Panthera uncia) on olfactory communication of Pallas’s cats (Otocolobus manul) in the Altai Mountains, Mongolia. Behaviour, , 1–9.
Abstract: Olfactory communication is important for many solitary carnivores to delineate territories and communicate with potential mates and competitors. Pallas’s cats (Otocolobus manul) are small felids with little published research on their ecology and behaviour, including if they avoid or change behaviours due to dominant carnivores. We studied their olfactory communication and visitation at scent-marking sites using camera traps in two study areas in Mongolia. We documented four types of olfactory communication behaviours, and olfaction (sniffing) was the most frequent. Pallas’s cats used olfactory communication most frequently at sites that were not visited by snow leopards (Panthera uncia) and when they used communal scent-marking sites, they were more likely to use olfactory communication when a longer time had elapsed since the last visit by a snow leopard. This suggests that Pallas’s cats may reduce advertising their presence in response to occurrence of snow leopards, possibly to limit predation risk.
|
Aruge, S., Batool, H., Khan, F. M., Abbas, F. I., Janjua, S. (2019). A pilot study�genetic diversity and population structure of snow leopards of Gilgit-Baltistan, Pakistan, using molecular techniques. PeerJ, (7672), 1–14.
Abstract: Background: The Hindu Kush and Karakoram mountain ranges in Pakistan�s northern areas are a natural habitat of the snow leopard (Panthera uncia syn. Uncia uncia) but the ecological studies on this animal are scarce since it is human shy by nature and lives in dif!cult mountainous tracts. The pilot study is conducted to exploit the genetic diversity and population structure of the snow leopard in this selected natural habitat of the member of the wildcat family in Pakistan.
Method: About 50 putative scat samples of snow leopard from !ve localities of Gilgit-Baltistan (Pakistan) along with a control sample of zoo maintained male snow leopard were collected for comparison. Signi!cant quality and quantity of genomic DNA was extracted from scat samples using combined Zhang�phenol�chloroform method and successful ampli!cation of cytochrome c oxidase I gene (190 bp) using mini-barcode primers, seven simple sequence repeats (SSR) markers and Y-linked AMELY gene (200 bp) was done.
Results: Cytochrome c oxidase I gene sequencing suggested that 33/50 (66%) scat samples were of snow leopard. AMELY primer suggested that out of 33 ampli!ed samples, 21 (63.63%) scats were from male and 12 (36.36%) from female leopards. Through successful ampli!cation of DNA of 25 out of 33 (75.75%) scat samples using SSR markers, a total of 68 alleles on seven SSR loci were identi!ed, showing low heterozygosity, while high gene "ow between population.
Discussion: The low gene flow rate among the population results in low genetic diversity causing decreased diversi!cation. This affects the adaptability to climatic changes, thus ultimately resulting in decreased population size of the species.
|
Atzeni, L., Cushman, S. A., Bai, D., Wang, J., Chen, P., Shi,
K., Riordan, P. (2020). Meta-replication, sampling bias, and multi-scale model selection:
A case study on snow leopard (Panthera uncia) in western China. Ecology and Evolution, , 1–27.
Abstract: Replicated multiple scale species distribution models (SDMs)
have become increasingly important to identify the correct variables
determining species distribution and their influences on ecological
responses. This study explores multi-scale habitat relationships of the
snow leopard (Panthera uncia) in two study areas on the Qinghai–Tibetan
Plateau of western China. Our primary objectives were to evaluate the
degree to which snow leopard habitat relationships, expressed by
predictors, scales of response, and magnitude of effects, were
consistent across study areas or locally landcape-specific. We coupled
univariate scale optimization and the maximum entropy algorithm to
produce multivariate SDMs, inferring the relative suitability for the
species by ensembling top performing models. We optimized the SDMs based
on average omission rate across the top models and ensembles’ overlap
with a simulated reference model. Comparison of SDMs in the two study
areas highlighted landscape-specific responses to limiting factors.
These were dependent on the effects of the hydrological network,
anthropogenic features, topographic complexity, and the heterogeneity of
the landcover patch mosaic. Overall, even accounting for specific local
differences, we found general landscape attributes associated with snow
leopard ecological requirements, consisting of a positive association
with uplands and ridges, aggregated low-contrast landscapes, and large
extents of grassy and herbaceous vegetation. As a means to evaluate the
performance of two bias correction methods, we explored their effects on
three datasets showing a range of bias intensities. The performance of
corrections depends on the bias intensity; however, density kernels
offered a reliable correction strategy under all circumstances. This
study reveals the multi-scale response of snow leopards to environmental
attributes and confirms the role of meta-replicated study designs for
the identification of spatially varying limiting factors. Furthermore,
this study makes important contributions to the ongoing discussion about
the best approaches for sampling bias correction.
|
Barnett, K. C., & Lewis, J. C. M. (2002). Multiple ocular colobomas in the snow leopard (Uncia uncia) (Vol. 5).
Abstract: Two singleton female snow leopard cubs are reported with bilateral central upper lid colobomas. In addition, one cub had a coloboma of the fundus in one eye extending from the lower optic disc region. Surgical treatment by wedge resection was successful in both cases. Details of ocular colobomas in the other snow leopards reported in the literature are described and it is suggested that the exact etiology of the condition in this species may be discovered by further study of similar colobomas in the domestic cat.
|
Bischof, R., Hameed, S., Ali, H., Kabir, M., Younas, M., Shah, K. A., Din, J. U., Nawaz, M. A. (2013). Using time-to-event analysis to complement hierarchical methods when assessing determinants of photographic detectability during camera trapping. Methods in Ecology and Evolution, .
Abstract: 1. Camera trapping, paired with analytical methods for estimating occupancy, abundance and other ecological parameters, can yield information with direct consequences for wildlife management and conservation. Although ecological information is the primary target of most camera trap studies, detectability influences every aspect from design to interpretation.
2. Concepts and methods of time-toevent analysis are directly applicable to camera trapping, yet this statistical field has thus far been ignored as a way to analyze photographic capture data. to illustrate the use to time-to-event statistics and to better understand how photographic evidence accumulates, we explored patterns in tow related measure of detectability: Detection probability and time to detection. We analyzed camera trap data for three sympatric carnivores ( snow Leopard, red fox and stone marten) in the mountains of northern Pakistan and tested predictions about patterns in detectability across species, sites and time.
3. We found species-specific differences in the magnitude of detectability and the factors influencing it, reinforcing the need to consider determinants of detectability in study design and to account for them during analysis. Photographic detectability of snow leopard was noticeably lower than that of red fox, but comparable to detectability of stone marten. Site-specific attributes such as the presence of carnivore sign ( snow Leopard), terrain ( snow leopard and red fox) and application for lures ( red fox) influenced detectability. For the most part, detection probability was constant over time.
4. Species- specific differences in factors determining detectability make camera trap studies targeting multiple species particularly vulnerable to misinterpretation if the hierarchical origin of the data is ignored. Investigators should consider not only the magnitude of detectability, but also the shape of the curve describing the cumulative process of photographic detection, as this has consequences for both determining survey effort and the election of analytical models. Weighted time-to -event analysis can complement occupancy analysis and other hierarchal methods by providing additional tools for exploring camera trap data and testing hypotheses regarding the temporal aspect of photographic evidence accumulation.
|
Blomqvist, L. (1978). First report on the snow leopard studbook (Panthera uncia) and 1976 world register. Int.Zoo Yearbook, 18, 227–231.
|
Blomqvist, L. (1979). The 1978 register for the captive population of snow leopards, Panthera uncia. International Zoo News, 26(7-8), 17–23.
|
Blomqvist, L. (1980). The 1979 world register for the captive population of snow leopards, Panthera uncia. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards (pp. 62–75). Helsinki: Helsinki Zoo.
|
Blomqvist, L. (1981). The 1980 annual report of the captive snow leopard (Panthera uncia) population and a review at the breeding results during the 1970's. Helsinki Zoo Annual Report. Helsinki: Helsinki Zoo.
|
Blomqvist, L. (1982). The 1981 annual report of the captive snow leopards (Panthera uncia) population. International Pedigree Book of Snow Leopards, 3.
|
Blomqvist, L. (1989). Status of the captive snow leopard (Panthera uncia) in 1987.
|
Blomqvist, L. (1993). The snow leopard, Panthera uncia, in captivity during the last 30 years (1961-1991). Helsinki: Helsinki Zoo.
|
Blomqvist, L. (2008). International Pedigree Book for Snow Leopards, Uncia uncia. Helsinki: Helsinki Zoo.
|
Blomqvist, L., & Dexel, B. (2006). In Focus: Declining numbers of wild snow leopards.
Abstract: International collaboration to ensure the long-term survival of snow leopards (Uncia uncia) in the wild is today more acutely needed than ever! Trade in live snow leopards, their skins and bones, has during the last decade reached such extensiveness that the species is in danger of being wiped out from many of its former habitats. All recent surveys support declining populations throughout most of their range.
|
Blomqvist, L., & Nystrom, V. (1980). On identifying snow leopards, Panthera uncia, by their facial markings. International Pedigree Book of Snow Leopards, , 159–167.
|
Blomqvist, L., & Sten, I. (1982). Reproductive biology of the snow leopard, Panthera uncia. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards (pp. 71–79). Helsinki: Helsinki Zoo.
|
Bocci, A., Lovari, S., Khan, M. Z., Mori, E. (2017). Sympatric snow leopards and Tibetan wolves: coexistence of large carnivores with human-driven potential competition. European Journal of Wildlife Research, , 1–9.
Abstract: The snow leopard Panthera uncia coexists with the wolf Canis lupus throughout most of its distribution range.
We analysed the food habits of snow leopards and wolves in their sympatric range in the Karakoram mountains of Pakistan. A total of 131 genotyped scats (N = 74, snow leopard; N = 57, Tibetan wolf) were collected during the cold periods (i.e. winter and spring) of 2011 and 2012 in the Hushey valley. Large mammals, i.e. livestock and ibex, accounted for 84.8 and 83.1% of the diet (relative frequency) of the snow leopard and the wolf, respectively. Domestic prey was the staple of the diet of both snow leopards (66.6%) and wolves (75.1%). Ibex Capra ibex, the only wild ungulate in our study area, contributed 18.2 and 16.9%of relative frequencies in the
diets of the snow leopard and the wolf, respectively. In winter, the snowleopard heavily relied on domestic sheep (43.3%) for food, whereas the wolf preyed mainly on domestic goats (43.4%). Differently from other study areas, both snow leopards and wolves showed no apparent prey preference (Jacobs
index: snow leopard min. − 0.098, max. 0.102; Tibetan wolf min. − 0.120, max. 0.03). In human depauperate areas, with livestock and only a few wild prey, should competitive interactions arise, two main scenarios could be expected, with either predator as a winner. In both cases, the best solution
could primarily impinge on habitat restoration, so that a balance could be found between these predators, who have already coexisted for thousands of years.
|
Chadwick, D. H. (2008). Out of the Shadows: The elusive Central Asian snow leopard steps into a. National geographic, 213(6), 106–129.
Abstract: The elusive Central Asian snow leopard steps into a risk-filled future.
|
Chakraborty, R. E., & Chakraborty, S. (1996). Identification of dorsal guard hairs of Indian species of the genus Panthera Oken (Carnivora: Felidae). Mammalia, 60(3), 480.
Abstract: Dorsal guard hairs of four living Indian species of the genus Panthera, viz. P. tigris, P. leo, P. pardus and P. uncia have been studied. It is found that the characters are somewhat overlapping, but identification of the species may be possible from the combination of characters.
|