Ale, S., Shrestha, B., and Jackson, R. (2014). On the status of Snow Leopard Panthera Uncia (Schreber 1775) in Annapurna, Nepal. Journal of Threatened Taxa, (6(3)), 5534–5543.
|
Alexander, J. S., Gopalswamy, A. M., Shi, K., Riordan, P. (2015). Face Value: Towards Robust Estimates of Snow Leopard Densities. Plos One, .
Abstract: When densities of large carnivores fall below certain thresholds, dramatic ecological effects
can follow, leading to oversimplified ecosystems. Understanding the population status of
such species remains a major challenge as they occur in low densities and their ranges are
wide. This paper describes the use of non-invasive data collection techniques combined
with recent spatial capture-recapture methods to estimate the density of snow leopards
Panthera uncia. It also investigates the influence of environmental and human activity indicators
on their spatial distribution. A total of 60 camera traps were systematically set up during
a three-month period over a 480 km2 study area in Qilianshan National Nature Reserve,
Gansu Province, China. We recorded 76 separate snow leopard captures over 2,906 trapdays,
representing an average capture success of 2.62 captures/100 trap-days. We identified
a total number of 20 unique individuals from photographs and estimated snow leopard
density at 3.31 (SE = 1.01) individuals per 100 km2. Results of our simulation exercise indicate
that our estimates from the Spatial Capture Recapture models were not optimal to
respect to bias and precision (RMSEs for density parameters less or equal to 0.87). Our
results underline the critical challenge in achieving sufficient sample sizes of snow leopard
captures and recaptures. Possible performance improvements are discussed, principally by
optimising effective camera capture and photographic data quality.
|
Alexander, J. S., Shi, K., Tallents, L. A., Riordan, P. (2015). On the high trail: examining determinants of site use by the Endangered snow leopard Panthera uncia in Qilianshan, China. Oryx, (Fauna & Flora International), 1–8.
Abstract: Abstract There is a need for simple and robust techniques for assessment and monitoring of populations of the Endangered snow leopard Panthera uncia to inform the de- velopment of action plans for snow leopard conservation. We explored the use of occupancy modelling to evaluate the influence of environmental and anthropogenic features on snow leopard site-use patterns. We conducted a camera trap survey across  km in Gansu Province, China, and used data from  camera traps to estimate probabilities of site use and detection using the single season occupancy model. We assessed the influence of three covariates on site use by snow leopards: elevation, the presence of blue sheep Pseudois nayaur and the presence of human disturb- ance (distance to roads). We recorded  captures of snow leopards over , trap-days, representing a mean capture success of . captures per  trap-days. Elevation had the strongest influence on site use, with the probability of site use increasing with altitude, whereas the influence of presence of prey and distance to roads was relatively weak. Our findings indicate the need for practical and robust tech- niques to appraise determinants of site use by snow leo- pards, especially in the context of the limited resources available for such work.
|
Alexander, S., A., Zhang, C., Shi, K., Riordan, P. (2016). A granular view of a snow leopard population using camera traps in Central China. Biological Conservation, (197), 27–31.
Abstract: Successful conservation of the endangered snow leopard (Panthera uncia) relies on the effectiveness of monitoring programmes. We present the results of a 19-month camera trap survey effort, conducted as part of a longterm study of the snow leopard population in Qilianshan National Nature Reserve of Gansu Province, China. Weassessed the minimumnumber of individual snowleopards and population density across different sampling periods using spatial capture–recapture methods. Between 2013–2014, we deployed 34 camera traps across an area of 375 km2, investing a total of 7133 trap-days effort. Weidentified a total number of 17–19 unique individuals
from photographs (10–12 adults, five sub-adults and two cubs). The total number of individuals identified and estimated density varied across sampling periods, between 10–15 individuals and 1.46–3.29 snow leopards per 100 km2 respectively. We demonstrate that snow leopard surveys of limited scale and conducted over short sampling periods only present partial views of a dynamic and transient system.We also underline the challenges in achieving a sufficient sample size of captures and recaptures to assess trends in snow leopard population size and/or density for policy and conservation decision-making
|
Anonymous. (1992). International Specialists Discuss China's Threatened Cats.
|
Augugliaro, C., Paniccia, C., Janchivlamdan, C., Monti, I. E., Boldbaatar, T., Munkhtsog, B. (2019). Mammal inventory in the Mongolian Gobi, with the southeasternmost documented record of the Snow Leopard, Panthera uncia (Schreber, 1775), in the country. Check List, 15(4), 575–578.
Abstract: Studies on mammal diversity and distribution are an important source to develop conservation and management strategies.
The area located in southern Mongolia, encompassing the Alashan Plateau Semi-Desert and the Eastern Gobi Desert-Steppe ecoregions, is considered strategic for the conservation of threatened species. We surveyed the non-volant mammals in the Small Gobi-A Strictly Protected Area (SPA) and its surroundings, by using camera trapping, live trapping, and occasional sightings. We recorded 18 mammal species belonging to 9 families and 6 orders. Among them, 4 are globally threatened or near-threatened, 2 are included in the CITES Appendix I, and 2 are listed in the Appendix II. Moreover, we provide the southeasternmost record for the Snow Leopard (Panthera uncia) in Mongolia, supported by photographic evidence. Our study highlights the importance of this protected area to preserve rare, threatened, and elusive species.
|
Bo, W. (2002). Illegal Trade of Snow Leopards in China: An Overview.. Islt: Islt.
|
Harris, R. B. (1994). A note on snow leopards and local people in Nangqian County, Southern Qinghai Province. In J.L.Fox, & D. Jizeng (Eds.), (pp. 79–84). Usa: Islt.
|
Henschel, P., & Ray, J. (2003). Leopards in African Rainforests: Survey and Monitoring Techniques (Wildlife Conservation Society, Ed.).
Abstract: Monitoring Techniques Forest leopards have never been systematically surveyed in African forests, in spite of their potentially vital ecological role as the sole large mammalian predators in these systems. Because leopards are rarely seen in this habitat, and are difficult to survey using the most common techniques for assessing relative abundances of forest mammals, baseline knowledge of leopard ecology and responses to human disturbance in African forests remain largely unknown. This technical handbook sums up the experience gained during a two-year study of leopards by Philipp Henschel in the Lop‚ Reserve in Gabon, Central Africa, in 2001/2002, supplemented by additional experience from carnivore studies conducted by Justina Ray in southwestern Central African Republic and eastern Congo (Zaire) . The main focus of this effort has been to develop a protocol that can be used by fieldworkers across west and central Africa to estimate leopard densities in various forest types. In developing this manual, Henschel tested several indirect methods to assess leopard numbers in both logged and unlogged forests, with the main effort devoted to testing remote photography survey methods developed for tigers by Karanth (e.g., Karanth 1995, Karanth & Nichols 1998; 2000; 2002), and modifying them for the specific conditions characterizing African forest environments. This handbook summarizes the results of the field testing, and provides recommendations for techniques to assess leopard presence/absence, relative abundance, and densities in African forest sites. We briefly review the suitability of various methods for different study objectives and go into particular detail on remote photography survey methodology, adapting previously developed methods and sampling considerations specifically to the African forest environment. Finally, we briefly discuss how camera trapping may be used as a tool to survey other forest mammals. Developing a survey protocol for African leopards is a necessary first step towards a regional assessment and priority setting exercise targeted at forest leopards, similar to those carried out on large carnivores in Asian and South American forests.
|
Hussain, I. (1999). Conserving Biodiversity through Institutional Diversity: Concept Paper.
|