(2002). Snow Leopard Survival Summit Group Photograph.
|
Ahmad, A. (1997). Community-Based Natural Resources Management in Northern Pakistan. In R.Jackson and A.Ahmad (Ed.), (pp. 148–154). Lahore, Pakistan: Islt.
|
Ahmad, A., Rawat, J. S., & Rai, S. C. (1990). An Analysis of the Himalayan Environment and Guidelines for its Management and Ecologically Sustainable Development. Environmentalist, 10(4), 281–298.
Abstract: The impacts of human activities on the bio-geophysical and socio-economic environment of the Himalayas are analysed. The main man-induced activities which have accelerated ecological degradation and threatened the equilibrium of Himalayan mountain ecosystems are stated as: unplanned land use, cultivation on steep slopes, overgrazing, major engineering activities, over-exploitation of village or community forests, lopping of broad leaved plant species, shifting cultivation (short cycle) in north-east India, tourism and recreation. The geomorphological conditions are major factors responsible for landslides which cause major havoc every year in the area. Wild fauna, like musk deer and the snow leopard are now under threat partially due to changes in their habitat and the introduction of exotic plant species. Population pressure and migration are major factors responsible for poverty in the hills. The emigration of the working male population has resulted in the involvement of women as a major work-force. Guidelines, with special emphasis on the application of environmental impact assessments for the management of the Himalayas, are proposed. -from Authors
|
Ale S. (2005). Have snow leopards made a comeback to the Everest region of Nepal?.
Abstract: In the 1960s, the endangered snow leopard was locally extirpated from the Sagarmatha (Mt. Everest) region of Nepal. In this Sherpa-inhabited high Himalaya, the flourishing tourism since the ascent of Mt Everest in 1953, has caused both prosperity and adverse impacts, the concern that catalyzed the establishment of Mt. Everest National Park in the region in 1976. In the late 1980s, there were reports that some transient snow leopards may have visited the area from adjoining Tibet, but no biological surveys exist to confirm the status of the cats and their prey. Have snow leopards finally returned to the top of the world? Exploring this question was the main purpose of this research project. We systematically walked altogether 24 sign transects covering over 13 km in length in three valleys, i.e. Namche, Phortse and Gokyo, of the park, and counted several snow leopard signs. The results indicated that snow leopards have made a comeback in the park in response to decades of protective measures, the virtual cessation of hunting and the recovery of the Himalayan tahr which is snow leopard's prey. The average sign density (4.2 signs/km and 2.5 sign sites/km) was comparable to that reported from other parts of the cats' range in the Himalaya. On this basis, we estimated the cat density in the Everest region between 1 to 3 cats per 100 sq km, a figure that was supported by different sets of pugmarks and actual sightings of snow leopards in the 60 km2 sample survey area. In the study area, tahr population had a low reproductive rate (e.g. kids-to-females ratio, 0.1, in Namche). Since predators can influence the size and the structure of prey species populations through mortality and through non-lethal effects or predation risk, snow leopards could have been the cause of the population dynamics of tahr in Sagarmtha, but this study could not confirm this speculation for which further probing may be required.
|
Ale, S. B., Yonzon, P., & Thapa, K. (2007). Recovery of snow leopard Uncia uncia in Sagarmatha (Mount Everest) National Park, Nepal (Vol. 41).
Abstract: From September to November 2004 we conducted surveys of snow leopard Uncia uncia signs in three major valleys in Sagarmatha (Mount Everest) National Park in Nepal using the Snow Leopard Information Management System, a standardized survey technique for snow leopard research. We walked 24 transects covering c. 14 km and located 33 sites with 56 snow leopard signs, and 17 signs incidentally in other areas. Snow leopards appear to have re-inhabited the Park, following their disappearance c. 40 years ago, apparently following the recovery of Himalayan tahr Hemitragus jemlahicus and musk deer Moschus chrysogaster populations. Taken together the locations of all 73 recent snow leopard signs indicate that the species is using predominantly grazing land and shrubland/ open forest at elevations of 3,000-5,000 m, habitat types that are also used by domestic and wild ungulates. Sagarmatha is the homeland of c. 3,500 Buddhist Sherpas with .3,000 livestock. Along with tourism and associated developments in Sagarmatha, traditional land use practices could be used to ensure coexistence of livestock and wildlife, including the recovering snow leopards, and ensure the wellbeing of the Sherpas.
|
Ali, S. M. (1990). The Cats of India. Myforest, 26(3), 275–291.
Abstract: Describes the range, behaviour and ecology of lion Panthera leo, tiger P. tigris, leopard P. pardus, snow leopard P. uncia, clouded leopard Neofelis nebylosa and cheetah Acinonyx jubatus. -P.J.Jarvis
|
Allen, P. (2002). Conservation Increases Crafts Income (Vol. Winter, 2002).
|
Allen, P., & Macray, D. (2002). Snow Leopard Enterprises Description and Summarized Business Plan.. Seattle: Islt.
Abstract: The habitat for both humans and snow leopards in Central Asia is marginal, the ecosystem fragile. The struggle for humans to survive has often, unfortunately, brought them into conflict with the region's dwindling snow leopard populations. Herders commonly see leopards as a threat to their way of life and well-being. Efforts to improve the living conditions of humans must consider potential impacts on the environment. Likewise, conservation initiatives cannot ignore humans as elements of the landscape with a right to live with dignity and pride. Based on these principles, the International Snow Leopard Trust has developed a new conservation model that addresses the needs of all concerned.
We call it Snow Leopard Enterprises..
|
Anandakrishnan, M. B. (1998). The snow leopard: Elusive and endangered. The Environmental Magazine, 9(5), 18–19.
Abstract: The snow leopard has never been common, but there may be fewer than 4,000 left in its Himalayan habitat, and poaching and tourism-related development in the region could drive its numbers down further.
|
Andriuskevicius, A. (1980). Occurrance of Snow Leopards in the Soviet Union. International Pedigree Book of Snow Leopards, 2, 59–69.
Abstract: Outlines status and distribution of snow leopard in USSR, including comments on reserves created for the species.
|
Anonymous. (1984). Snow leopard trade in court.
|
Anonymous. (2000). A snow leopard conservation plan for Mongolia.
Abstract: The snow leopard faces multiple threats in the Himalayan region, from habitat degradation, loss of prey, the trade in pelts, parts and live animals, and conflict with humans, primarily pastoralists. Consequently, the populations are considered to be in decline and the species is listed as Endangered in the IUCN's Red List. As a 'flagship' and 'umbrella' species the snow leopard can be a unifying biological feature to raise awareness of its plight and the need for conservation, which will benefit other facets of Himalayan biodiversity as well. Some studies of snow leopards have been conducted in the Himalayan region. But, because of its elusive nature and preference for remote and inaccessible habitat, knowledge of the ecology and behaviour of this mystical montane predator is scant. The available information, however, suggests that snow leopards occur at low densities and large areas of habitat are required to conserve a viable population. Thus, many researchers and conservationists have advocated landscape-scale approaches to conservation within a regional context, rather than focusing on individual protected areas.This regional strategy for WWF's snow leopard conservation program is built on such an approach. The following were identified as important regional issues: 1) international trade in snow leopards and parts; 2) the human-snow leopard conflict; 3) the need for a landscape approach to conservation to provide large spatial areas that can support demographically and ecologically viable snow leopard metapopulations; 4) research on snow leopard ecology to develop long-term, science-based conservation management plans; and 5) regional coordination and dialog. While the issues are regional, the WWF's in the region have developed 5-year strategic actions and activities, using the regional strategies as a touchstone, which will be implemented at national levels. The WWF's will develop proposals based on these strategic actions, with estimated budgets, for use by the network for funding and fund-raising. WWF also recognizes the need to collaborate and coordinate within the network and with other organizations in the region to achieve conservation goals in an efficient manner, and will form a working group to coordinate activities and monitor progress.
|
Anonymous. (2000). Snow leopard management plan of Mongolia (draft).
|
Anonymous. (2000). Snow Leopard Smuggler Detained in Northwest China.
Abstract: Police have detained a man for trying to smuggle two snow leopards through the Xining Railway Station in northwest China's Qinghai Province. Ma Deliang was stopped by police after he attempted to pass the butchered snow leopards off as “beef” at a shop in Sichuan in southwest China. Suspicious of the contents in Ma's big sack, police asked experts from the local forestry bureau to check the meat and they found it to be flesh of two snow leopards, an endangered species on top state protection. Ma later confessed that he bought the dead snow leopards at a local market and wanted to smuggle them to Deyang, a city in southwest China's Sichuan province. Police also searched Ma's home and found dear heads, antlers and lynx and fox furs. Snow leopards live in highlands of altitudes between 3,000 to 6, 000 m above sea level. The population of the species has dwindled greatly since the 19th century.
|
Aromov B. (1995). The Biology of the Snow Leopard in the Hissar Nature Reserve.
Abstract: The work contains data on biology snow leopard in Hissar nature reserve, Uzbekistan. The number of snow leopards in this reserve has increased from two or four in 1981 to between 13 and 17 individuals in 1994. Since 1981, snow leopards have been sighted 72 times and their tracks or pugmarks 223 times. In the Hissar Nature Reserve snow leopards largely feed on ibex. Over a period of 14 years, 92 kills and remains of ibex aged from one to thirteen years of age have been examined. Other records of predation, by the number of events observed, include 33 cases of juvenile and mature horses, 25 long-tailed marmot (Marmota caudata). 18 Himalayan snowcock (Tetraogallus himalayemis), 17 domestic goat, 13 wild boar (Sus scrofa), five domestic sheep and three incidents involving cattle. Twenty-two attacks on domestic flocks were reported, and these occurred during both the daytime and at night. Snow leopards usually mate between the 20th of February and March 20th. The offspring are born in late April to May, and there are usually two per litter (23 encounters), although a single litter of three has also been recorded.
|
Aryal, A. (2009). Final Report On Demography and Causes of Mortality of Blue Sheep (Pseudois nayaur) in Dhorpatan Hunting Reserve in Nepal.
Abstract: A total of 206 individual Blue sheep Pseudois nayaur were estimated in Barse and Phagune blocks of Dhorpatan Hunting Reserve (DHR) and population density was 1.8 Blue sheep/sq.km. There was not significant change in population density from last 4 decades. An average 7 animals/herd (SD-5.5) were classified from twenty nine herds, sheep per herds varying from 1 to 37. Blue sheep has classified into sex ratio on an average 75 male/100females was recorded in study area. The sex ratio was slightly lower but not significantly different from the previous study. Population of Blue sheep was seen stable or not decrease even there was high poaching pressure, the reason may be reducing the number of predators by poison and poaching which has
supported to increase blue sheep population. Because of reducing the predators Wolf Canis lupus, Wild boar population was increasing drastically in high rate and we can observed wild boar above the tree line of DHR. The frequency of occurrence of different prey species in scats of different predators shows that, excluding zero values, the frequencies of different prey species were no significantly different (ö2= 10.3, df = 49, p > 0.05). Most of the scats samples (74%) of Snow leopard, Wolf, Common Leopard, Red fox's cover one prey species while two and three species were present in 18% and 8%, respectively. Barking deer Muntiacus muntjak was the most frequent (18%) of total diet composition of common leopards. Pika Ochotona roylei was the most frequent (28%), and Blue sheep was in second position for diet of snow leopards which cover 21% of total diet composition. 13% of diet covered non-food item such as soil, stones, and vegetable. Pika was most frequent on Wolf and Red fox diet which covered 32% and 30% respectively. There was good positive relationship between the scat density and Blue sheep consumption rate, increasing the scat density, increasing the Blue sheep consumption rate. Blue sheep preference by different predators such as Snow leopard, Common leopard, Wolf and Red fox were 20%, 6%, 13% and 2% of total prey species respectively.
|
Bannikov, A. (1954). Mammals of the Mongolian People's Republic. Moscow: Academy of Sciences.
|
Bartlett, L. (1997). Good News for the Bad and the Ugly at CITES Conference.
Abstract: And prices can be high. CITES lists the following record payments (in US dollars): Falcon, 200,000; snow leopard skins, 60,000; musk grain, 50,000 per kilogramme; South American parrot, 40,000; Peruvian butterfly, 3,000; orchid, 2,000. Apparently rare creatures are worth the earth, to some people.
|
Begg, T. (1978). Nutritional bone disease in the snow leopard. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards, Vol. 1 (Vol. 1, pp. 104–107). Helsinki: Helsinki Zoo.
|
Blomqvist, L. (1978). Photos of snow leopards. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards, Vol. 1 (Vol. 1, pp. 141–151). Helsinki: Helsinki Zoo.
|
Blomqvist, L. (1978). Resolution from the first international snow leopard conference in Helsinki on March 7-8, 1978. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards, Vol. 1 (Vol. 1, pp. 3–5). Helsinki: Helsinki Zoo.
|
Blomqvist, L. (1978). The Snow Leopard, Panthera uncia, in Captivity and the 1977 World Register. Int.Ped.Book of Snow Leopards, 1, 22–34.
|
Blomqvist, L. (1980). Photos of snow leopards. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards (Vol. 2, pp. 239–257). Helsinki: Helsinki Zoo.
|
Blomqvist, L. (1980). The snow leopard register. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards (Vol. 2, pp. 218–238). Helsinki: Helsinki Zoo.
|
Blomqvist, L. (1981). The 1980 annual report of the captive snow leopard (Panthera uncia) population and a review at the breeding results during the 1970's. Helsinki Zoo Annual Report. Helsinki: Helsinki Zoo.
|