Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–18] |
![]() |
Adil, A. (1997). Status and Conservation of Snow Leopard in Afghanistan. In R.Jackson, & A.Ahmad (Eds.), (pp. 35–38). Lahore, Pakistan: International Snow Leopard Trust.
Keywords: Afghanistan; conservation; status; Palang-i-Barfi; Hindu-kush; Pamir; Ajar; park; parks; reserve; reserves; refuge; hunting; poaching; skin; fur; pelt; coat; distribution; ibex; Marco-Polo; sheep; markhor; predator; prey; protected-area; marco; polo; hindu; kush; browse; 2460
|
Ahmad, A. (1994). Protection of Snow Leopards through Grazier Communities:Some Examples from WWF-Pakistan's Projects in the Northern Areas. In J.L.Fox, & D.Jizeng (Eds.), (pp. 265–272). Usa: International Snow Leopard Trust.
Abstract: Snow leopards occur near the snow line in northern Pakistan in the districts of Swat, Dir and Chitral of the Northwest Frontier Province (NWFP), Muzaffarabad district in Azad Kashmir and Gilgit and Baltistan districts in the Northern Areas. Although a number of protected areas are present in the form of national parks, wildlife sanctuaries and game reserves (Table 1) where legal protection is available to all wildlife species, including snow leopards, the status of this endangered species is not improving satisfactorily. The reasons are many and range from direct persecution by livestock owners to the less than strict management of protected areas.
Because of remote and inaccessible locations and lack of proper communication with local communities, government officials and nongovernmental organizations (NGOs) concerned with conservation find it difficult to obtain statistics on mortality of snow leopards. However, the killing of snow leopards is not uncommon. Because of the close and long-term association between local villagers and snow leopards, it is only through the support and cooperation of these peoples that protection of this endangered species can be assured against most of the existing threats. The effects of such cooperation has been clearly shown through some of the conservation projects of World Wildlife Fund (WWF) – Pakistan. Details of such projects and certain lessons that can be learned from these and similar projects are discussed in this paper. Keywords: conservation; Pakistan; Wwf; world-wildlife-fund; livestock; herders; herder; status; parks; park; reserve; refuge; protected-area; Dir; chitral; predator; prey; grazier; pelt; fur; coat; skin; poaching; Khunjerab; Marco-Polo-sheep; ibex; markhor; hunting; browse; protected; area; sheep; Marco-Polo; 2040
|
Ahmad, I., Hunter, D. O., & Jackson, R. (1997). A Snow Leopard and Prey Species Survey in Khunjerab National Park, Pakistan. In R.Jackson, & A.Ahmad (Eds.), (pp. 92–95). Lahore, Pakistan: Islt.
Keywords: Slims; Islt; Wwf; predator; prey; Pakistan; Khunjerab; parks; park; reserve; reserves; refuge; Marco-Polo-sheep; blue-sheep; surveys; survey; transect; sighn; markings; marking; scrape; spray; ibex; tracks; pug marks; feces; livestock; kill; herder; herders; protected-area; blue; sheep; browse; international snow leopard trust; world wildlife fund; marco polo sheep; marco polo; pug; marks; protected area; protected areas; protected; area; areas; 2810
|
Ale S. (2005). Have snow leopards made a comeback to the Everest region of Nepal?.
Abstract: In the 1960s, the endangered snow leopard was locally extirpated from the Sagarmatha (Mt. Everest) region of Nepal. In this Sherpa-inhabited high Himalaya, the flourishing tourism since the ascent of Mt Everest in 1953, has caused both prosperity and adverse impacts, the concern that catalyzed the establishment of Mt. Everest National Park in the region in 1976. In the late 1980s, there were reports that some transient snow leopards may have visited the area from adjoining Tibet, but no biological surveys exist to confirm the status of the cats and their prey. Have snow leopards finally returned to the top of the world? Exploring this question was the main purpose of this research project. We systematically walked altogether 24 sign transects covering over 13 km in length in three valleys, i.e. Namche, Phortse and Gokyo, of the park, and counted several snow leopard signs. The results indicated that snow leopards have made a comeback in the park in response to decades of protective measures, the virtual cessation of hunting and the recovery of the Himalayan tahr which is snow leopard's prey. The average sign density (4.2 signs/km and 2.5 sign sites/km) was comparable to that reported from other parts of the cats' range in the Himalaya. On this basis, we estimated the cat density in the Everest region between 1 to 3 cats per 100 sq km, a figure that was supported by different sets of pugmarks and actual sightings of snow leopards in the 60 km2 sample survey area. In the study area, tahr population had a low reproductive rate (e.g. kids-to-females ratio, 0.1, in Namche). Since predators can influence the size and the structure of prey species populations through mortality and through non-lethal effects or predation risk, snow leopards could have been the cause of the population dynamics of tahr in Sagarmtha, but this study could not confirm this speculation for which further probing may be required.
Keywords: snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; region; Nepal; Report; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; 1960; endangered; Sagarmatha; High; Himalaya; tourism; impact; establishment; national; national park; National-park; park; 1980; area; Tibet; surveys; survey; status; Cats; cat; prey; research; project; sign; transects; transect; length; valley; Response; hunting; recovery; Himalayan; tahr; density; densities; range; pugmarks; sighting; 60; study; population; predators; predator; structure; prey species; prey-species; species; populations; mortality; effects; predation; population dynamics
|
Ale, S. B., Brown, J.S. (2009). Prey behavior leads to predator: a case study of the Himalayan tahr and the snow leopard in Sagarmatha (Mt. Everest) National Park, Nepal. Israel Journal of Ecology & Evolution, 55(4), 315–327.
Abstract: Rare, elusive predators offer few sightings, hindering research with small sample sizes and lack of experimentation. While predators may be elusive, their prey are more readily observed. Prey respond to the presence of a predator, and these fear responses may have population- and community-level consequences. Anti-predator behaviors, such as vigilance, allow us to sidestep the difficulty of direct field studies of large predators by studying them indirectly. Here we used a behavioral indicator, the vigilance behavior of the Himalayan tahr, the snow leopard’s main local prey, to reveal the distribution and habitat use of snow leopards in the Mt. Everest region of Nepal. We combined techniques of conventional field biology with concepts of foraging theory to study prey behavior in order to obtain insights into the predator’s ecology. The Himalayan tahr’s vigilance behavior correlates with the distribution of snow leopard signs. Tahr actually led us to six sightings of snow leopards. We conclude that behavioral indicators provided by prey offer a valuable tool for studying and monitoring stealthy and rare carnivores.
|
Allen, P. (2001). Irbis Enterprises: A Project of the International Snow Leopard Trust (Vol. 6). Columbus Zoo and Aquarium. |
Anonymous. (1992). International Specialists Discuss China's Threatened Cats. |
Anonymous. (1999). Livestock Predation Control Workshop.
Keywords: Lahul-Spiti; Ladakh; Hemis; parks; reserves; refuge; protected-area; argali; abix; blue-sheep; wolves; distribution; status; population; poaching; hunting; trade; skins; livestock; pelts; coat; fur; bones; medicine; prey-depletion; herders; habitat; habitat-degradation; tourism; Tmi; Islt; predator; prey; conflict; compensation; trekking; blue; sheep; browse; protected; area; depletion; degradation; international snow leopard trust; 3940
|
Aramov, B. (1997). The Biology of the Snow Leopard in the Gissarsky Nature Reserve. In R. and A. A. Jackson (Ed.), (pp. 108–109). Lahore, Pakistan: Islt. |
Aryal, A. (2009). Final Report On Demography and Causes of Mortality of Blue Sheep (Pseudois nayaur) in Dhorpatan Hunting Reserve in Nepal.
Abstract: A total of 206 individual Blue sheep Pseudois nayaur were estimated in Barse and Phagune blocks of Dhorpatan Hunting Reserve (DHR) and population density was 1.8 Blue sheep/sq.km. There was not significant change in population density from last 4 decades. An average 7 animals/herd (SD-5.5) were classified from twenty nine herds, sheep per herds varying from 1 to 37. Blue sheep has classified into sex ratio on an average 75 male/100females was recorded in study area. The sex ratio was slightly lower but not significantly different from the previous study. Population of Blue sheep was seen stable or not decrease even there was high poaching pressure, the reason may be reducing the number of predators by poison and poaching which has
supported to increase blue sheep population. Because of reducing the predators Wolf Canis lupus, Wild boar population was increasing drastically in high rate and we can observed wild boar above the tree line of DHR. The frequency of occurrence of different prey species in scats of different predators shows that, excluding zero values, the frequencies of different prey species were no significantly different (ö2= 10.3, df = 49, p > 0.05). Most of the scats samples (74%) of Snow leopard, Wolf, Common Leopard, Red fox's cover one prey species while two and three species were present in 18% and 8%, respectively. Barking deer Muntiacus muntjak was the most frequent (18%) of total diet composition of common leopards. Pika Ochotona roylei was the most frequent (28%), and Blue sheep was in second position for diet of snow leopards which cover 21% of total diet composition. 13% of diet covered non-food item such as soil, stones, and vegetable. Pika was most frequent on Wolf and Red fox diet which covered 32% and 30% respectively. There was good positive relationship between the scat density and Blue sheep consumption rate, increasing the scat density, increasing the Blue sheep consumption rate. Blue sheep preference by different predators such as Snow leopard, Common leopard, Wolf and Red fox were 20%, 6%, 13% and 2% of total prey species respectively. Keywords: Report; mortality; blue; blue sheep; blue-sheep; sheep; Pseudois; pseudois nayaur; Pseudois-nayaur; nayaur; Dhorpatan; hunting; reserve; Nepal; biodiversity; research; training; snow; snow leopard; snow-leopard; leopard; conservation; program; population; Population-Density; density; densities; change; Sex; study; area; High; poaching; Pressure; reducing; number; predators; predator; poison; wolf; wolves; canis; Canis-lupus; lupus; wild; wild boar; prey; prey species; prey-species; species; scats; scat; value; fox; cover; deer; diet; leopards; pika; snow leopards; snow-leopards; soil; Relationship
|