|
Brown, J. L., Wasser, S. K., Wildt, D. E., & Graham, L. H. (1994). Comparative Aspects of Steroid Hormone Metabolism and Ovarian Activity in Felids, Measured Noninvasively in Feces. Biol Reprod, 51(4), 776–786.
Abstract: Noninvasive fecal assays were used to study steroid metabolism and ovarian activity in several felid species. Using the domestic cat (Felis catus) as model, the excretory products of injected [14C]estradiol (E2) and [14C]progesterone (P4) were determined. Within 2 days, 97.0 +/- 0.6% and 96.7 +/- 0.5% of recovered E2 and P4 radioactivity, respectively, was found in feces. E2 was excreted as unconjugated estradiol and estrone (40%) and as a non-enzyme- hydrolyzable conjugate (60%). P4 was excreted primarily as non-enzyme- hydrolyzable, conjugated metabolites (78%) and as unconjugated pregnenolone epimers. A simple method for extracting fecal steroid metabolites optimized extraction efficiencies of the E2 and P4 excretion products (90.1 +/- 0.8% and 87.2 +/- 1.4%, respectively). Analysis of HPLC fractions of extracted fecal samples from the radiolabel-injected domestic cats revealed that E2 immunoreactivity coincided primarily with the unconjugated metabolized [14C]E2 peak, whereas progestogen immunoreactivity coincided with a single conjugated epimer and multiple unconjugated pregnenolone epimers. After HPLC separation, similar immunoreactive E2 and P4 metabolite profiles were observed in the leopard cat (F. bengalensis), cheetah (Acinonyx jubatus), clouded leopard (Neofelis nebulosa), and snow leopard (Panthera uncia). Longitudinal analyses demonstrated that changes in fecal E2 and P4 metabolite concentrations reflected natural or artificially induced ovarian activity. For example, severalfold increases in E2 excretion were associated with overt estrus or exogenous gonadotropin treatment, and elevated fecal P4 metabolite concentrations occurred during pregnant and nonpregnant (pseudopregnant) luteal phases. Although overall concentrations were similar, the duration of elevated fecal P4 metabolites during pseudopregnancy was approximately half that observed during pregnancy. In summary, steroid metabolism mechanisms appear to be conserved among these physically diverse, taxonomically related species. Results indicate that this hormone-monitoring approach will be extremely useful for elucidating the hormonal regulatory mechanism associated with the reproductive cycle, pregnancy, and parturition of intractable and endangered felid species.
|
|
|
Hast, M. H. (1989). The larynx of roaring and non-roaring cats. J Anat, 163, 117–121.
Abstract: Dissections were made of the larynges of 14 species of the cat family, with representative specimens from all genera. It was found that the vocal folds of the larynx of genus Panthera (with the exception of the snow leopard) form the basic structure of a sound generator well- designed to produce a high acoustical energy. Combined with an efficient sound radiator (vocal tract) that can be adjusted in length, a Panthera can use its vocal instrument literally to blow its own horn with a 'roar'. Also, it is proposed that laryngeal morphology can be used as an anatomical character in mammalian taxonomy.
|
|
|
Jackson, R. (1992). SSC Plan for Snow Leopard.
|
|
|
Jalanka, H. H. (1991). Medetomidine, medetomidine-ketamine combinations and atipamezole in nondomestic mammals: A clinical, physiological and comparative study. Dep.Clinical Sciences, Coll.Veterinary Med., Helsinki, Finland, .
Abstract: Hibiscus section Furcaria is composed of over 400 species. Kenaf (Hibiscus cannabinus) and rosella (Hibiscus sabdariffa) belong to this section. Both species are important fiber crops. The survey reported in this book was undertaken in order to find new sources of genetic diversity collect, save, and distribute germ plasm. The work contains a taxonomic key of section Furcaria in southern Africa, 8 species, a description of the species illustrated by line-drawings, and distribution maps. (Also discussed are; H. mechowii, H. meeusei, H. surattensis, H. acetosella, H. torrei, H. mastersianus, H. hiernianus, H. altissimus, H. diversifolius sub sp. rivularis.)
|
|
|
Johnston, L. A., Armstrong, D. L., & Brown, J. L. (1994). Seasonal effects on seminal and endocrine traits in the captive snow leopard (Panthera uncia). J Reprod Fertil, 102(1), 229–236.
Abstract: The annual reproductive cycle of the male snow leopard (Panthera uncia) was characterized by evaluating seminal and endocrine traits monthly. Testicular volume was greatest (P < 0.05) during the winter months when the quality of ejaculate was optimal. Ejaculate volume, total sperm concentration ml-1, motile sperm concentration per ejaculate, sperm morphology and sperm motility index were lowest during the summer and autumn months compared with the winter and spring. Peripheral LH, FSH and testosterone concentrations were also lowest during the summer months, increasing during the autumn just before the increase in semen quality, and were maximal during the winter months. There was a direct relationship (P < 0.01) between: (1) testosterone and testicular volume, total sperm concentration ml-1, motile sperm concentration per ejaculate and ejaculate volume, and (2) LH and testicular volume and motile sperm concentration per ejaculate. In summary, although spermatozoa were recovered throughout the year, optimal gamete quality was observed during the winter and spring. Although previous studies in felids have demonstrated seasonal effects on either seminal or endocrine traits, this is the first study to demonstrate a distinct effect of season on both pituitary and testicular function.
|
|
|
Johnston, L. A., Donoghue, A. M., O'Brien, S. J., & Wildt, D. E. (1991). Rescue and maturation in vitro of follicular oocytes collected from nondomestic felid species. Biol Reprod, 45(6), 898–906.
Abstract: The potential for rescuing immature oocytes from the ovaries of females of rare felid species which die or undergo medical ovariohysterectomy was evaluated. Ovaries were recovered from 13 species representing 35 individuals in good-to-poor health. Although the majority of females were 10 yr of age or older and in fair-to-poor health, a total of 846 oocytes were recovered of which 608 (71.9%) were classified as fair-to- excellent quality. One hundred of these oocytes were used for initial maturation classification and as parthogenetic controls. Overall, of the 508 fair-to-excellent quality oocytes placed in culture, 164 (32.3%) matured to metaphase II in vitro. For species in which 3 or more individuals yielded oocytes, mean oocyte maturation rates were as follows: 36.2%, tiger; 27.9% leopard; and 8.3%, cheetah. In vitro insemination of oocytes resulted in fertilization (2 polar bodies, 2 pronuclei, or cleavage) rates of 9.1% to 28.6% (leopard) using homologous fresh spermatozoa and 4.0% (lion) to 40.0% (puma) using homologous frozen-thawed spermatozoa. Inseminations using heterologous (domestic cat) spermatozoa also resulted in fertilized oocytes in the tiger, leopard, snow leopard, puma, serval, and Geoffroy's cat (range in fertilization rate, 5.0% for leopard to 46.2% for puma). Cleaved embryos resulted from the insemination of leopard oocytes with homologous sperm (n = 1 embryo) and puma oocytes with domestic cat sperm (n = 3 embryos). These results demonstrate that immature ovarian oocytes from rare felid species can be stimulated to mature in vitro despite an excision-to-culture interval as long as 36 h.(ABSTRACT TRUNCATED AT 250 WORDS)
|
|
|
Kitchener, S. L., Merritt, D.A., Rosenthal, M.A. (1974). Observations on the management, physiology, and hand rearing of snow leopards (Panthera uncia) at Lincoln Park Zoo, Chicago, from 1960-1974.
Abstract: Data on the 28 snow leopards born at the zoo in a 13 year period.
|
|
|
Marma, B. B., & Yunchis, V. V. (1968). Observations on the breeding, management and physiology of Snow leopards (Panthera u. uncia) at Kaunas Zoo from 1962 to 1967. In C. Jarvis, & R. Biegler (Eds.), Canids and Felids in Captivity (pp. 66–73). Zoological Society of London.
|
|
|
Roth, T. L., Armstrong, D. L., Barrie, M. T., & Wildt, D. E. (1997). Seasonal effects on ovarian responsiveness to exogenous gonadotrophins and successful artificial insemination in the snow leopard (Uncia uncia). Reprod Fertil Dev, 9(3), 285–295.
Abstract: Ovaries of the seasonally-breeding snow leopard (Uncia uncia) were examined to determine whether they were responsive to exogenous gonadotrophins throughout the year. The potential of laparoscopic artificial insemination (AI) also was assessed for producing offspring. During the non-breeding, pre-breeding, breeding and post-breeding seasons, females (n = 20) were treated with a standardized, dual- hormone regimen given intramuscularly (600 I.U. of equine chorionic gonadotrophin followed 80-84 h later with 300 I.U. of human chorionic gonadotrophin (hCG)). Laparoscopy was performed 45-50 h after administration of hCG, and all ovarian structures were described. Females with fresh corpora lutea (CL) were inseminated, and anovulatory females were subjected to follicular aspiration to examine oocyte quality. Snow leopards responded to exogenous gonadotrophins throughout the year. Mean number of total ovarian structures (distinct follicles mature in appearance plus CL) did not differ (P > or = 0.05) with season, but the proportion of CL: total ovarian structures was greater (P < 0.01) for the breeding season compared with all other seasons. The proportion of females ovulating was greater (P < 0.05) during the breeding and post-breeding seasons than during the pre-breeding and non- breeding seasons respectively. No Grade-1 quality oocytes were recovered from follicles of anovulatory females. Serum concentrations of oestradiol-17 beta appeared elevated in all females, and neither oestradiol-17 beta concentrations nor progesterone concentrations differed (P > or = 0.05) among seasons. Of 15 females artificially inseminated, the only one that was inseminated in the non-breeding season became pregnant and delivered a single cub. This is the first successful pregnancy resulting from AI in this endangered species.
|
|
|
Roth, T. L., Howard, J. G., Donoghue, A. M., Swanson, W. F., & Wildt, D. E. (1994). Function and culture requirements of snow leopard (Panthera uncia) spermatozoa in vitro. J Reprod Fertil, 101(3), 563–569.
Abstract: Electroejaculates from eight snow leopards were used to determine how the motility of spermatozoa was influenced by (i) type of media (Ham's F10, PBS, human tubal fluid or RPMI-1640); (ii) holding temperature (23 degrees C versus 37 degrees C); (iii) washing of spermatozoa and (iv) a sperm metabolic enhancer, pentoxifylline. The duration of sperm motility was assessed by evaluating samples in each treatment every hour for 6 h and a sperm motility index (a value combining percentage sperm motility and rate of forward progression) calculated. Spermatozoa from the Ham's F10, PBS and PBS plus pentoxifylline treatments were also co-incubated with zona-intact, domestic cat eggs that were fixed and evaluated for spermatozoa bound to the zona pellucida, penetrating the outer and inner layers of the zona pellucida and within the perivitelline space. During the 6 h co-incubation, the sperm motility index in PBS with pentoxifylline was greater (P < 0.05) than in PBS alone which, in turn, was greater (P < 0.05) than in the other three test media. Washing the spermatozoa enhanced (P < 0.05) motility in both PBS and PBS plus pentoxifylline relative to unwashed samples, but there was no effect (P > 0.05) of holding temperature. Pentoxifylline supplementation enhanced (P < 0.05) the proportion of cat eggs with bound, but not penetrated, snow leopard spermatozoa in the inner layer of the zona pellucida, and there were no spermatozoa in the perivitelline space.(ABSTRACT TRUNCATED AT 250 WORDS)
|
|